摘要 | 第1-6页 |
Abstract | 第6-10页 |
第1章 前言 | 第10-24页 |
§1.1 基本概念和记号 | 第10-15页 |
§1.2 问题的研究背景 | 第15-16页 |
§1.3 研究进展 | 第16-20页 |
§1.4 本文的主要结果 | 第20-24页 |
第2章 有限阿贝尔群上的Bi-Cayley图的匹配可扩性 | 第24-42页 |
§2.1 引言 | 第24-25页 |
§2.2 BC(G,S)的2-可扩性 | 第25-31页 |
§2.3 BC(G,S)的3-可扩性 | 第31-41页 |
§2.4 结束语 | 第41-42页 |
第3章 二面体群上的Bi-Cayley图的可扩性 | 第42-52页 |
§3.1 BC(D_n,S)的1-可扩性 | 第42-43页 |
§3.2 BC(D_n,S)的2-可扩性 | 第43-50页 |
§3.3 结束语 | 第50-52页 |
第4章 二面体群上的Semi-Cayley图的可扩性 | 第52-84页 |
§4.1 SC(D_n;R,R,T)的1-可扩性 | 第52-54页 |
§4.2 SC(D_n;R,R,T)的2-可扩性 | 第54-81页 |
§4.3. D_n×Z2上的Cayley图的可扩性 | 第81-83页 |
§4.4 结束语 | 第83-84页 |
第5章 阿贝尔群的Semi-Cayley图的谱 | 第84-98页 |
§5.1 引言 | 第84-86页 |
§5.2 有限阿贝尔群上的Semi-Cayley图的谱 | 第86-92页 |
§5.3 一些特殊情况 | 第92-97页 |
§5.4 结束语 | 第97-98页 |
参考文献 | 第98-106页 |
在学期间的研究成果 | 第106-108页 |
致谢 | 第108页 |