首页--交通运输论文--公路运输论文--汽车工程论文--汽车试验论文--整车试验论文

基于偏置碰撞的汽车前部结构优化研究

Abstract第5页
摘要第6-14页
Nomenclature第14-16页
1 Introduction第16-35页
    1.1 Background第16-19页
        1.1.1 Problem statement第17-18页
        1.1.2 Objectives第18页
        1.1.3 Research methodology第18页
        1.1.4 Scope of the thesis第18-19页
        1.1.5 Organization of the thesis第19页
    1.2 Literature Review第19-35页
        1.2.1 Vehicle crash analysis第19-20页
        1.2.2 Frontal offset collision第20-22页
        1.2.3 Barrier preparation and kinetic energy calculation第22-23页
        1.2.4 Frontal fixed offset deformable barrier crash test standards第23-24页
        1.2.5 Regulations and standards of electric vehicles crash safety第24-28页
        1.2.6 High-voltage batteries in passenger cars第28-30页
        1.2.7 Common battery integration in vehicle第30-31页
        1.2.8 Influences of the impact in EV battery pack第31页
        1.2.9 Occupants crash protection第31-35页
2 Methods and Materials第35-51页
    2.1 Engineering Materials Deformation during Impact第35-40页
        2.1.1 Linear elasticity deformation第35-36页
        2.1.2 Nonlinear elasticity (Plastic) deformation第36-37页
        2.1.3 True stress and strain for plastic deformation第37-39页
        2.1.4 Material toughness第39页
        2.1.5 Alternative materials for car body structure design第39-40页
    2.2 Finite Element Analysis (FEA)第40-44页
        2.2.1 Principles of Finite Element Method (FEM)第40-41页
        2.2.2 Non-linear finite element analysis during vehicle crash simulation第41-43页
        2.2.3 Pre-processing Finite Element Analysis第43-44页
        2.2.4 Finite Element Analysis solver第44页
        2.2.5 Post-processing Finite Element Analysis第44页
    2.3 Methods第44-47页
        2.3.1 Introduction to the car model第44-47页
        2.3.2 Vehicle structure optimization methods第47页
    2.4 Materials and Property Settings第47-51页
        2.4.1 Material setting第47-48页
        2.4.2 Property setting第48-49页
        2.4.3 LS-DYNA compatible units第49页
        2.4.4 Boundary and initial conditions第49-51页
3 Model Development and Validation第51-76页
    3.1 Importing the Model第51-53页
    3.2 Meshing and Element Formulation第53页
    3.3. Energy Balance Analysis第53-55页
    3.4 Added Mass Curve during Simulation第55页
    3.5 Front Components Energy Absorption Analysis第55-62页
        3.5.1 Bumper and bumper buffer blocks internal energy absorption第56-57页
        3.5.2 Crash boxes internal energy absorption第57-58页
        3.5.3. Longitudinal beams internal energy absorption第58-59页
        3.5.4 A-pillars internal energy absorption第59-60页
        3.5.5 Firewall internal energy absorption第60-61页
        3.5.6 Upper rails energy absorption第61页
        3.5.7 Sill beams internal energy absorption第61-62页
    3.6 Deformation Analysis第62-71页
        3.6.1 Bumpers deformation第63-64页
        3.6.2 Crash boxes deformation第64-67页
        3.6.3 Longitudinal beams deformation第67-68页
        3.6.4 A-pillars deformation第68页
        3.6.5 Upper rails deformation第68-69页
        3.6.6 Firewall deformation第69页
        3.6.7 Sill beams deformation第69-70页
        3.6.8 Front doors deformation第70页
        3.6.9 Cabin floors deformation第70-71页
        3.6.10 Body side outer panel deformation第71页
    3.7 Occupant Compartment Safety Validation第71-76页
        3.7.1 Velocity curve第71-72页
        3.7.2 Acceleration curve第72-73页
        3.7.3 Front occupant compartment intrusion measurements第73-76页
4 Front Components Optimization第76-95页
    4.1 Optimization Methods第76-77页
    4.2 Added Mass Curve after Optimization第77-78页
    4.3 Energy Balance Analysis after Optimization第78-79页
    4.4 Occupant Compartment Safety Validation第79-82页
        4.4.1 Front occupant compartment intrusion plot第79-80页
        4.4.2 Velocity curve第80页
        4.4.3 Acceleration curve第80-82页
    4.5 Optimized Front Components Energy Absorption Analysis第82-88页
        4.5.1 Bumper and bumper buffer blocks internal energy absorption第82-83页
        4.5.2 Crash boxes internal energy absorption第83-84页
        4.5.3 Longitudinal beams internal energy absorption第84-85页
        4.5.4 A-pillars internal energy absorption第85-86页
        4.5.5 Firewall internal energy absorption第86页
        4.5.6 Upper rails internal energy absorption第86-87页
        4.5.7 Sill beams internal energy absorption第87-88页
    4.6 Deformation Analysis after Optimization第88-95页
        4.6.1 Car FE model deformation after front component optimization第88页
        4.6.2 Bumpers deformation第88-89页
        4.6.3 Crash boxes deformation第89-90页
        4.6.4 Longitudinal beams deformation第90-91页
        4.6.5 A-pillars deformation第91页
        4.6.6 Upper rails deformation第91-92页
        4.6.7 Firewall deformation第92页
        4.6.8 Sill beams deformation第92-93页
        4.6.9 Front doors deformation第93页
        4.6.10 Cabin floors deformation第93-94页
        4.6.11 Body side outer panel deformation第94-95页
5 Discussion and Conclusion第95-98页
    5.1 Discussion第95-96页
        5.1.1 Intrusion improvement第95页
        5.1.2 Energy absorption improvement in the longitudinal beams第95-96页
        5.1.3 Energy absorption improvement in the cash boxes第96页
        5.1.4 Occupant compartment structures improvement第96页
    5.2 Conclusion第96-98页
References第98-101页
Appendix A Steel materials and its properties第101-103页
Acknowledgement第103页

论文共103页,点击 下载论文
上一篇:Pedestrian Injury in Frontal Crash Process Based on Different Collision Locations
下一篇:汽车覆盖件冲压成形回弹补偿方法研究