首页--数理科学和化学论文--计算数学论文--数值分析论文--微分方程、积分方程的数值解法论文--偏微分方程的数值解法论文

建立在偏微分方程/概率理论基础上Monge-Kantorovich问题的快速算法

摘要第1-7页
ABSTRACT第7-10页
1 最优输运问题第10-13页
   ·Monge问题的提出第10-11页
   ·Monge-Kantorovich问题的提出第11-13页
2 p-Monge-Kantorovich输运问题第13-21页
   ·最优解的存在性第13页
   ·一元时的精确表示第13-14页
   ·元平方Monge-Kantorovich输运问题第14-17页
   ·罚方法第17-20页
   ·q和r的唯一性第20-21页
3 数值离散第21-24页
   ·记号第21-22页
   ·子问题第22-24页
     ·E_2(q)的极小化第22-23页
     ·E_3(r)的极小化第23-24页
4 数值算例第24-30页
   ·一个简单的例子第24-26页
   ·应用到图像第26-29页
     ·相同图像第26-28页
     ·不同图像第28-29页
   ·关于参数影响的讨论第29-30页
5 局限性第30-33页
参考文献第33-36页
致谢第36页

论文共36页,点击 下载论文
上一篇:基于方向回归的结构维数检验问题研究
下一篇:基于Cox模型的个体数据未决赔款准备金评估方法