基于振动信号的大型风力发电机齿轮箱健康状态预测研究
摘要 | 第1-6页 |
Abstract | 第6-10页 |
第一章 绪论 | 第10-16页 |
·课题的来源依据 | 第10页 |
·引言 | 第10-11页 |
·风力发电机组国内外研究动态 | 第11-14页 |
·本文主要的研究内容 | 第14-15页 |
·本课题的目的与意义 | 第15-16页 |
第二章 齿轮箱振动机理及典型故障 | 第16-26页 |
·风力发电机齿轮箱基本结构 | 第16-18页 |
·齿轮振动产生原因及典型故障分析 | 第18-21页 |
·齿轮振动的产生原因分析 | 第18-19页 |
·齿轮典型故障分析 | 第19-21页 |
·轴承振动产生原因及典型故障分析 | 第21-23页 |
·滚动轴承振动产生原因分析 | 第21-22页 |
·轴承典型故障分析 | 第22-23页 |
·齿轮箱振动信号特征分析 | 第23-25页 |
·齿轮故障的振动信号特征 | 第23-24页 |
·滚动轴承故障的振动信号特征 | 第24-25页 |
·本章小结 | 第25-26页 |
第三章 希尔伯特-黄变换方法应用研究 | 第26-55页 |
·经验模态分解法 | 第26-30页 |
·特征尺度 | 第26-27页 |
·瞬时频率 | 第27-28页 |
·内禀模态函数(IMF) | 第28页 |
·经验模态分解法的原理 | 第28-29页 |
·经验模态分解法的算法步骤 | 第29-30页 |
·经验模态分解方法的特点 | 第30-32页 |
·希尔伯特变换 | 第32-33页 |
·实例应用 | 第33-36页 |
·振动信号采集 | 第36-39页 |
·振动信号处理 | 第39-54页 |
·应用希尔伯特-黄变换的齿轮箱故障初步诊断 | 第41-51页 |
·基于振动信号的经验模态分解能量特征提取 | 第51-54页 |
·本章小结 | 第54-55页 |
第四章 神经网络预测方法研究 | 第55-65页 |
·BP 神经网络结构 | 第55-56页 |
·BP 神经网络的缺陷 | 第56-57页 |
·BP 神经网络的改进 | 第57-58页 |
·仿真应用 | 第58-63页 |
·齿轮箱振动信号的 BP 神经网络识别预测 | 第63-64页 |
·本章小结 | 第64-65页 |
第五章 结论 | 第65-67页 |
·结论 | 第65页 |
·展望 | 第65-67页 |
参考文献 | 第67-70页 |
在学研究成果 | 第70-71页 |
致谢 | 第71页 |