摘要 | 第1-5页 |
ABSTRACT | 第5-9页 |
第一章 引言 | 第9-12页 |
·研究背景与意义 | 第9-10页 |
·主要工作 | 第10-11页 |
·章节安排 | 第11-12页 |
第二章 跟踪方法概述 | 第12-26页 |
·匹配跟踪方法 | 第12-17页 |
·基于背景建模的跟踪 | 第12-14页 |
·基于光流分割的跟踪 | 第14-16页 |
·基于特征点聚类的跟踪 | 第16-17页 |
·目标更新跟踪 | 第17-25页 |
·Mean Shift | 第18-20页 |
·粒子滤波 | 第20-25页 |
·本章小结 | 第25-26页 |
第三章 改进的颜色直方图特征 | 第26-32页 |
·颜色空间 | 第26-28页 |
·传统颜色直方图 | 第28-29页 |
·分块重叠的颜色直方图 | 第29-30页 |
·分块颜色直方图特征的提取 | 第30-31页 |
·快速提取技巧 | 第30-31页 |
·本章小结 | 第31-32页 |
第四章 HOG 特征和SVM 支持向量机 | 第32-44页 |
·HOG 特征 | 第33-40页 |
·HOG 特征提取方法总览 | 第33-34页 |
·梯度计算方法 | 第34-35页 |
·窗分割及块重叠率确定 | 第35-37页 |
·Cell 中的直方图投票 | 第37-38页 |
·Block 归一化方法 | 第38-39页 |
·目标定位方法 | 第39-40页 |
·SVM 支持向量机 | 第40-43页 |
·SVM 的数学模型 | 第41-42页 |
·使用软隔间的SVM | 第42-43页 |
·非线性SVM | 第43页 |
·本章小结 | 第43-44页 |
第五章 系统实现 | 第44-53页 |
·基于分块颜色直方图的粒子滤波跟踪系统 | 第44-48页 |
·系统流程 | 第45页 |
·粒子状态参数 | 第45-46页 |
·粒子初始化 | 第46页 |
·粒子预测 | 第46页 |
·粒子权重计算 | 第46-48页 |
·参考模型更新策略 | 第48页 |
·加入HOG 特征和SVM 学习的粒子滤波跟踪 | 第48-49页 |
·加入HOG 和SVM 后的系统流程 | 第49-50页 |
·HOG 特征提取参数 | 第50-51页 |
·特征训练 | 第51-52页 |
·本章小结 | 第52-53页 |
第六章 实验结果和分析 | 第53-62页 |
·分块颜色直方图PF 跟踪系统实验 | 第53-58页 |
·分块颜色直方图PF 跟踪系统加入HOG、SVM 后实验 | 第58-61页 |
·本章小结 | 第61-62页 |
第七章 总结和展望 | 第62-64页 |
·本文总结 | 第62页 |
·今后工作和展望 | 第62-64页 |
参考文献 | 第64-67页 |
致谢 | 第67-68页 |
攻读硕士学位期间已发表或录用的论文 | 第68-70页 |