首页--工业技术论文--机械、仪表工业论文--机械设计、计算与制图论文--机械设计论文

Optimization of the Mechanical Design of the Dual Axis Inertially Stabilized Platform for the Line of Sight Stabilization

ABSTRACT第6-8页
Contents第10-16页
List of Figures第16-22页
List of Tables第22-24页
Chapter 1:Introduction第24-48页
    1.1 Statement of the Problem第25-26页
    1.2 Objective of the Present Work第26页
    1.3 Scope of the Present Work第26-27页
    1.4 Dual Axis Inertially Stabilized Platform Configurations,Design Considerations, and Applications第27-46页
        1.4.1 Classification of the LOS Stabilization Approaches第27-28页
            1.4.1.1 Direct and Indirect Line Of Sight Stabilization第28页
            1.4.1.2 Mass and Mirror Line Of Sight Stabilization第28页
        1.4.2 Applications of Inertially Stabilized Platforms第28-33页
            1.4.2.1 Autonomous Driving of Intelligent Vehicles第29页
            1.4.2.2 Electro一Optical(EO)Tracking System第29-30页
            1.4.2.3 Imaging第30-31页
            1.4.2.4 Communication Antennas第31页
            1.4.2.5 Inertial Navigation System(INS)第31-33页
        1.4.3 ISP Components and Design Tradeoffs第33-39页
            1.4.3.1 Gyros第33-37页
            1.4.3.2 Bearings and Suspension第37-38页
            1.4.3.3 Motors and Actuators第38页
            1.4.3.4 Relative-Motion Transducers第38-39页
            1.4.3.5 Rotating Electrical Interfaces第39页
        1.4.4 The Double-Gimbal ISP第39-41页
            1.4.4.1 Gimbals Kinematics第39-40页
            1.4.4.2 Gimbals Dynamics第40-41页
        1.4.5 Structural Dynamic Analysis of ISP第41-43页
            1.4.5.1 Modes of Response第41-42页
            1.4.5.2 Modal Analysis and Structural Dynamics第42页
            1.4.5.3 Modal Analysis Using FEM第42-43页
        1.4.6 Summery of Errors in ISP第43-44页
        1.4.7 The Control System第44-46页
        1.4.8 Design Methodology of an ISP第46页
    1.5 Summery第46-48页
Chapter 2:Inertially Stabilized Platform Optimal Design第48-94页
    2.1 The System Requirements第48-49页
    2.2 Basic System Configuration第49-51页
    2.3 3D Solid Modeling第51-53页
    2.4 Mathematical Modeling第53-74页
        2.4.1 Inertially Stabilized Platform Kinematics Model第58-60页
        2.4.2 Inertially Stabilized Platform Dynamic Model第60-74页
            2.4.2.1 Derivations of the Dynamic Model第60-63页
            2.4.2.2 Dynamic Analysis for the Inner Gimbal第63-68页
            2.4.2.3 Dynamic Analysis for the Outer Gimbal第68-74页
    2.5 FEM Modal Analysis第74-84页
        2.5.1 The ISP's FEM Modal Analysis第75-83页
            2.5.1.1 The Original ISP's FEM Modal Analysis第76-78页
            2.5.1.2 The Payload Carrying Frame FEM Modal Analysis第78-80页
            2.5.1.3 The Payload Frame with the EO Devices Modal Analysis第80-82页
            2.5.1.4 The Whole Inner Gimbal FEM Modal Analysis第82-83页
        2.5.2 Summary of the FEM Modal Analysis第83-84页
    2.6 Servo Control System第84-92页
        2.6.1 Robust PI Controller for Line of Sight Stabilization第85-88页
        2.6.2 Non-linear Fuzzy Logic PI Controller for Line of Sight Stabilization第88-92页
    2.7 Summary第92-94页
Chapter 3:Design,Implementation and Experimental Testing of 3D LADAR System for Mobile Targets Path Tracking and Terrestrial Scanning第94-116页
    3.1 Introduction第94-97页
    3.2 LADAR System Structure第97-101页
        3.2.1 Laser Range Finder第97-98页
        3.2.2 Rotary Table第98页
        3.2.3 Optical Imaging System(Camera and Optical Telescope)第98-99页
        3.2.4 Electronic Compass第99页
        3.2.5 Green Pilot Laser第99-100页
        3.2.6 Power Unit第100页
        3.2.7 Communication Unit第100-101页
        3.2.8 Interface Computer第101页
        3.2.9 Power Supply Source第101页
    3.3 LADAR System Mathematical Modeling第101-107页
        3.3.1 The 1~(st) Mathematical Model第102-105页
        3.3.2 The 2~(nd) Mathematical Model第105-107页
    3.4 Experimental Testing第107-113页
        3.4.1 Mobile Target Path Tracking第108-111页
        3.4.2 Terrestrial Scanning of Large Objects第111-113页
    3.5 Summary第113-116页
Chapter 4:The Mechanical Design of Two-Axis Fast Steering Mirror for Optical Beam Guidance第116-132页
    4.1 Introduction第116-117页
    4.2 FSM System Architecture and Application Theory第117-125页
        4.2.1 Mechanical Design and Control System Considerations第121页
        4.2.2 Mirror Design第121-122页
        4.2.3 Piezoelectric Actuators第122-123页
        4.2.4 Compliant Mechanisms第123-125页
            4.2.4.1 Axial Flexure Design第123-125页
            4.2.4.2 Extension Spring第125页
    4.3 System Analysis第125-129页
    4.4 Discussion and Optimization第129-130页
    4.5 Summary第130-132页
Chapter 5:A New Concept for the Line of Sight Stabilization第132-176页
    5.1 Introduction第132-134页
    5.2 Working Principle第134-136页
    5.3 System Analysis第136-143页
        5.3.1 Forces Acting on the Rollers During Rest第138-139页
        5.3.2 Moments Acting on the Rotating Structure during Motion第139-141页
        5.3.3 Conditions for Optimal LOS Stabilization Process第141-143页
    5.4 System's Mathematical Modeling第143-147页
        5.4.1 Kinematics Modeling第144-146页
        5.4.2 Dynamics Modeling第146-147页
    5.5 Design and Simulation of Two-Axes ISP Based on the Ball Stabilization Method第147-165页
        5.5.1 System Architecture第147-150页
        5.5.2 System Analysis第150-153页
        5.5.3 System Performance Simulation第153-164页
        5.5.4 FEM Modal Analysis第164-165页
    5.6 Experimental Work第165-172页
        5.6.1 The Actual System Configuration第166-168页
        5.6.2 Dimensional and Accuracy Testing第168-169页
        5.6.3 The Driving Actuators and Wheels第169-170页
        5.6.4 Augmented Stabilization第170-172页
    5.7 Summary and Comparison between the Different Stabilization Methods第172-176页
Chapter 6:Conclusions,Contributions and Future Work第176-182页
    6.1 Conclusions第176-179页
    6.2 Contributions第179页
    6.3 Recommendations for Future Work第179-182页
Acknowledgement第182-184页
References第184-192页
Appendix A第192-196页
Appendix B第196-198页
List of Publications第198页

论文共198页,点击 下载论文
上一篇:舟山群岛人居单元营建理论与方法研究
下一篇:体系结构级Cache功耗优化技术研究