论文摘要 | 第1-7页 |
ABSTRACT | 第7-8页 |
Résumé | 第8-13页 |
List of Tables | 第13-15页 |
List of Figures | 第15-20页 |
1 Introduction | 第20-27页 |
2 Some Probabilistic Properties of Stationary Processes | 第27-47页 |
·Introduction of Stationary Processes | 第27-30页 |
·Short Memory Processes | 第28页 |
·Long Memory Processes | 第28-30页 |
·Self-similar Properties for Stationary Processes | 第30-47页 |
·Concepts of Self-similarity | 第30-32页 |
·Continuous-time Self-similar Processes | 第32-34页 |
·Discrete-time Self-similar Processes | 第34-36页 |
·Examples of Self-similar Processes in Continuous Time | 第36-39页 |
·Examples of Self-similar Processes in Discrete Time | 第39-45页 |
·Summarize for the Self-similar Processes | 第45-47页 |
3 Wavelet Techniques for Time Series Analysis | 第47-61页 |
·Introduction of the Time-frequency Representations | 第47-49页 |
·Fourier Transform | 第47-48页 |
·Short-Time Fourier Transform | 第48页 |
·Wavelet Transform | 第48-49页 |
·Properties of the Wavelet Transform | 第49-51页 |
·Continuous Wavelet Functions | 第49-50页 |
·Continuous versus Discrete Wavelet Transform | 第50-51页 |
·Discrete Wavelet Filters | 第51-53页 |
·Haar Wavelets | 第52-53页 |
·Daubechies Wavelets | 第53页 |
·Minimum Bandwidth Discrete-time Wavelets | 第53页 |
·Discrete Wavelet Transform (DWT) | 第53-56页 |
·Implementation of the DWT:Pyramid Algorithm | 第54-56页 |
·Multiresolution Analysis | 第56页 |
·Maximal Overlap Discrete Wavelet Transform (MODWT) | 第56-58页 |
·Definition and Implementation of MODWT | 第57页 |
·Multiresolution Analysis | 第57-58页 |
·Discrete Wavelet Packet Transform (DWPT) | 第58-60页 |
·Maximal Overlap Discrete Wavelet Packet Transform (MODWPT) | 第60-61页 |
4 Estimation Methods for Stationary Long Memory Processes:A Review | 第61-88页 |
·ARFIMA Processes | 第63-77页 |
·Parametric Estimators | 第65-67页 |
·Semiparametric Estimators | 第67-70页 |
·Wavelet Estimators | 第70-77页 |
·Seasonal and/or Cyclical Long Memory (SCLM) Models | 第77-87页 |
·Estimation for the k-factor Gegenbauer ARMA Processes | 第79-86页 |
·Estimation for the Models with Fixed Seasonal Periodicity | 第86-87页 |
·Seasonal and/or Cyclical Asymmetric Long Memory (SCALM) Models | 第87-88页 |
5 Estimation and Forecast for Non-stationary Long Memory Processes | 第88-115页 |
·Fractional Integrated Processes with a Constant Long Memory Parameter | 第90-91页 |
·Locally Stationary ARFIMA Processes | 第91-93页 |
·Locally Stationary k-factor Gegenbauer Processes | 第93-101页 |
·Procedure for Estimating d_i(t) | 第95页 |
·Estimation Procedure | 第95-97页 |
·Procedure for Estimating d_i(t)(i=1,…,k) | 第97-99页 |
·Consistency for estimates d_i(t)(i=1,…,k) | 第99-101页 |
·Simulation Experiments | 第101-105页 |
·Forecast for Non-stationary Processes | 第105-115页 |
6 Applications | 第115-168页 |
·Nikkei Stock Average 225 Index Data | 第115-135页 |
·Data Set | 第115页 |
·Modeling | 第115-121页 |
·Forecast | 第121-135页 |
·WTI Oil Data | 第135-167页 |
·Fitting by Stationary Model:AR(1)+FI(d) Model | 第136页 |
·Fitting by Stationary Model:AR(2)+FI(d) Model | 第136-147页 |
·Fitting by Non-stationary Model Using Wavelet Method | 第147页 |
·Forecast | 第147-167页 |
·Conclusion | 第167-168页 |
7 Testing the Fractional Order of Long Memory Processes | 第168-181页 |
·Unit Root Test for Autoregressive Moving Average Processes | 第169-170页 |
·Unit Root Test for Fractional Integrated Processes | 第170-181页 |
8 Conclusion | 第181-185页 |
·Overview of the Contribution | 第181-183页 |
·Possible Directions for Future Research | 第183-185页 |
A The Well-definedness of the Locally Stationary k-factor Gegenbauer Pro-cesses | 第185-187页 |
Bibliography | 第187-203页 |