首页--工业技术论文--无线电电子学、电信技术论文--无线通信论文

基于SON技术的智能无线网络自主运维和资源优化研究

ABSTRACT第5-7页
摘要第8-13页
List of Symbols第13-15页
List of Abbreviations第15-21页
CHAPTER 1 INTRODUCTION第21-43页
    1.1 Background第21-22页
    1.2 Overview of Self-Organizing Networks第22-24页
    1.3 Artificial Intelligence in Wireless Networks With Big Data第24-26页
    1.4 Energy Harvesting in Wireless Networks第26-27页
    1.5 SON-Aided Self-management and Resource Optimization in Wireless Networks第27-39页
        1.5.1 Machine Learning aided Context-Aware Self-Healing Management for Ultra Dense Networks with QoS Provisions第27-30页
        1.5.2 Multiple Time-Scale SON Function Coordination in Ultra-Dense Small Cell Networks第30-34页
        1.5.3 Energy-aware Resource Allocation for OFDMA Wireless Networks with Hybrid Energy Supplies第34-35页
        1.5.4 Self-sustaining Resource-on-Demand Strategy for Multi-RAT Wireless Networks Powered by Heterogeneous Energy Sources第35-39页
    1.6 Contributions and Organization of the Thesis第39-43页
CHAPTER 2 Machine Learning aided Context-Aware Self-Healing Management for Ultra Dense Networks with QoS Provisions第43-63页
    2.1 System Model第43-45页
        2.1.1 Comprehensive SH Architecture第43-44页
        2.1.2 Network Model第44-45页
        2.1.3 Channel Model第45页
    2.2 The SCOD Scheme With Context Information of MDT Measurements第45-50页
        2.2.1 Small Cell Outage Profiling and Triggering第46-48页
        2.2.2 Small Cell Outage Detection and Localization第48-50页
    2.3 Distributed Small Cell Self-Healing Scheme第50-57页
        2.3.1 Problem Statement第51-56页
        2.3.2 Complexity Analysis第56-57页
    2.4 Simulation Results第57-61页
        2.4.1 Simulation Setup第57页
        2.4.2 Simulation Performance第57-61页
    2.5 Summary第61-63页
CHAPTER 3 Multiple Time-Scale SON Function Coordination in Ultra-Dense Small Cell Networks第63-81页
    3.1 System Model第64-67页
        3.1.1 Control Model第64-65页
        3.1.2 SON Operation Model第65页
        3.1.3 SON Performance Metric Model第65-67页
    3.2 Multiple Time-Scales SON Coordination第67-69页
    3.3 Solution of Multiple SON Coordinations第69-72页
    3.4 Q-Learning based energy efficiency management with SON第72-76页
    3.5 Simulation Results第76-80页
    3.6 Conclusions第80-81页
CHAPTER 4 Energy-Aware Resource Allocation for OFDMA Wireless Networks with Hybrid Energy Supplies第81-99页
    4.1 System Model and Problem Formulation第81-85页
        4.1.1 Network Architecture第81-82页
        4.1.2 Energy Supply and Data Process Sub-Systems第82-84页
        4.1.3 Problem Formulation第84-85页
    4.2 Proposed EARA Algorithm第85-89页
        4.2.1 Problem Analysis and Transformation第85-86页
        4.2.2 The Solution to Problem P 52第86-88页
        4.2.3 Proposed EARA Algorithm第88-89页
    4.3 Performance Analysis and Implementation Considerations of the EARA Algorithm第89-93页
        4.3.1 Performance Analysis第89-91页
        4.3.2 Implementation Architecture of the EARA Algorithm第91-93页
    4.4 Simulation Results第93-97页
        4.4.1 Simulation Model and Parameters第93页
        4.4.2 Theoretical Results Verification第93-94页
        4.4.3 Performance evaluation of the Proposed EARA Algorithm第94-97页
    4.5 Summary第97-99页
CHAPTER 5 Dynamic Resource-on-Demand Strategy for Multi-RAT Wireless Networks Powered by Heterogeneous Energy Sources第99-123页
    5.1 System Model and Problem Formulation第100-105页
        5.1.1 System Model第100-101页
        5.1.2 Energy Supply Model第101-102页
        5.1.3 Data Queue Model第102-103页
        5.1.4 Problem Formulation第103-105页
    5.2 Algorithm Design for Multi-RAT Resource Allocation第105-108页
        5.2.1 Multi-RAT Flow Control第106-107页
        5.2.2 Multi-RAT Energy Management第107-108页
        5.2.3 Multi-RAT Resource Allocation第108页
    5.3 Optimal Energy Management and Resource Allocation第108-113页
        5.3.1 Solution of Multi-RAT Energy Management第109-110页
        5.3.2 Solution of Multi-RAT Resource Allocation第110-113页
    5.4 Tradeoff Performance between Network Utility and Delay第113-115页
    5.5 Simulation Results第115-121页
    5.6 Conclusions第121-123页
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS第123-127页
    6.1 Conclusions第123-125页
    6.2 Future Works第125-127页
APPENDIX PROOF OF THEOREMS第127-133页
    A.1 Machine Learning aided Context-Aware Self-Healing Management for Ultra Dense Networks with QoS Provisions第127-129页
        A.1.1 Proof of Theorem 1第127-128页
        A.1.2 Proof of Theorem 2第128-129页
    A.2 Dynamic Resource-on-Demand Strategy for Multi-RAT Wireless Networks Powered by Heterogeneous Energy Sources第129-133页
        A.2.1 Proof of Lemma 1第129-130页
        A.2.2 Proof of Theorem 1第130-133页
ACKNOWLEDAGEMENTS第133-135页
RESUME第135-137页
REFERENCES第137-150页

论文共150页,点击 下载论文
上一篇:基于自动编码器的高分辨雷达目标识别研究
下一篇:高移动环境下OFDM导频ICI抑制及信道估计技术研究