摘要 | 第1-5页 |
Abstract | 第5-9页 |
A summary of literature | 第9-20页 |
I. Quantum cryptography | 第10-13页 |
II. Quantum secret sharing | 第13-15页 |
III. Quantum secure direct communication | 第15-16页 |
IV. Quantum teleportation | 第16-20页 |
A. Quantum teleportation protocol invented by Bennett et al. | 第16-17页 |
B. The controlled quantum teleportation scheme | 第17-20页 |
Our work | 第20-106页 |
V. Quantum secret sharing between multiparty and multiparty with four states | 第21-32页 |
A. Review of the original quantum secret sharing protocol between multiparty and multiparty without entanglement | 第21-23页 |
B. The improvement of quantum secret sharing protocol between multiparty and multiparty without entanglement | 第23-26页 |
C. Security | 第26-32页 |
1. The security against the attack with single photons and the attack with EPR pairs | 第26页 |
2. The security against the fake-signal attack with EPR pairs | 第26-32页 |
VI. Quantum secret sharing between multiparty and multiparty with six states | 第32-46页 |
A. Introduction | 第32-34页 |
B. Quantum key sharing between multiparty and multiparty based on six states | 第34-43页 |
C. Security | 第43-46页 |
VII. Quantum secret sharing protocol between multiparty and multiparty with Single photons and unitary transformations | 第46-51页 |
VIII. Optimal controlled teleportation | 第51-95页 |
A. Introduction | 第51-53页 |
B. The controlled quantum teleportation using a general three-particle state | 第53-57页 |
C. The maximal successful probability of controlled quantum teleportation using a. general three-particle state | 第57-88页 |
1. a_1 = a_2 = a_3 = 0, and a_0a_4 ≠ 0 | 第58-59页 |
2. a_1 =a_4 =0, and a_0a_2a_3 ≠ 0 | 第59页 |
3. One is a_1 = a_2 = 0 and a_0a_3a_4 ≠ 0, the other is a_1 = a_3 = 0 and a0a_2a_4 ≠ 0 | 第59-60页 |
4. One is a_2 = a_4 = 0 and a_0a_1a_3 ≠ 0, the other is a_3 = a_4 = 0 and a_0a_1a_2 ≠ 0 | 第60页 |
5. a_2 = a_3 = 0 and a_0a_1a_4 ≠ 0 | 第60-61页 |
6. a-1 = 0 and a_0a_2a_3a_4 ≠ 0 | 第61-64页 |
7. a-4 = 0 and a_0a_1a_2a_3 ≠ 0 | 第64-67页 |
8. One is a_2 = 0 and a_0a_1a_3a_4 ≠ 0, the other is a_3 = 0 and a_0a_1a_2a_4 ≠ 0 | 第67-69页 |
9. μ= 0 and a_0a_1a_2a_3a_4 ≠ 0 | 第69-73页 |
10. μ= πand a_0a_1a_2a-3a_4 ≠ 0 | 第73-79页 |
11. The general case —a_0a_1a_2a_3a_4 sinμ≠ 0 | 第79-88页 |
D. All three-qubit states that can be used for perfect teleportation | 第88-92页 |
E. Localized entanglement | 第92-94页 |
F. Conclusion | 第94-95页 |
IX. An implementation of a positive operator valued measure | 第95-102页 |
X. Capacity of a simultaneous quantum secure direct communication scheme between the central party and other M parties | 第102-106页 |
References | 第106-115页 |
Acknowledgements | 第115-116页 |
攻读学位期间取得的科研成果清单 | 第116页 |