首页--数理科学和化学论文--计算数学论文--数值分析论文--微分方程、积分方程的数值解法论文

随机泛函微分方程的概周期性及概自守性研究

摘要第1-7页
Abstract第7-11页
第一章 绪论第11-35页
   ·概周期函数、渐近概周期函数及伪概周期函数第11-17页
   ·概自守函数、渐近概自守函数及伪概自守函数第17-23页
   ·C_0-半群的基本概念与性质第23-25页
   ·随机泛函微分方程与随机分析的基本知识第25-31页
   ·本文的研究背景、意义以及主要工作第31-35页
第二章 随机泛函微分方程平方期望概周期温和解的存在性与一致稳定性第35-54页
   ·p-期望概周期随机过程的概念与基本性质第35-37页
   ·平方期望概周期温和解的存在性与一致稳定性第37-54页
     ·存在性第37-50页
     ·一致稳定性第50-52页
     ·应用第52-54页
第三章 p-期望渐近概周期随机过程及其在随机泛函微分方程中的应用第54-77页
   ·p-期望渐近概周期随机过程的概念与基本性质第54-56页
   ·应用到随机泛函微分方程第56-74页
     ·平方期望渐近概周期温和解的存在性第56-70页
     ·平方期望渐近概周期温和解的指数稳定性第70-74页
   ·应用举例第74-77页
第四章 p-期望概自守随机过程及其在随机泛函微分方程中的应用第77-97页
   ·p-期望概自守随机过程的概念与基本性质第77-80页
   ·应用到随机泛函微分方程第80-95页
     ·平方期望概自守温和解的存在性第81-90页
     ·平方期望概自守温和解的指数稳定性第90-95页
   ·应用举例第95-97页
第五章 随机泛函微分方程平方期望伪概自守温和解的存在性与指数稳定性第97-118页
   ·平方期望伪概自守随机过程的概念与基本性质第97-98页
   ·平方期望伪概自守温和解的存在性与指数稳定性第98-118页
     ·存在性第99-111页
     ·指数稳定性第111-115页
     ·应用第115-118页
总结第118-121页
参考文献第121-135页
攻读博士学位期间取得的研究成果第135-137页
致谢第137-138页
答辩委员会对论文的评定意见第138页

论文共138页,点击 下载论文
上一篇:广义Camassa-Holm方程和修正Fornberg-Whitham方程的行波解及分支
下一篇:直接使用化石燃料的固体氧化物燃料电池的研究