致谢 | 第1-6页 |
摘要(Abstract) | 第6-11页 |
第一章 绪论 | 第11-21页 |
§1.1 椭圆曲线密码体制 | 第11-13页 |
§1.2 超椭圆曲线密码体制的研究背景和意义 | 第13-15页 |
§1.3 超椭圆曲线密码体制的研究现状 | 第15-20页 |
§1.4 本论文章节安排 | 第20-21页 |
第二章 数学背景知识 | 第21-30页 |
§2.1 有限域 | 第21页 |
§2.2 超椭圆曲线 | 第21-24页 |
§2.3 除子 | 第24-25页 |
§2.4 超椭圆曲线的Jacobian及其运算 | 第25-27页 |
§2.5 Frobenius自同态及Weil猜想 | 第27-28页 |
§2.6 超椭圆函数域 | 第28-30页 |
第三章 超椭圆曲线密码体制 | 第30-48页 |
§3.1 HC-DH协议和HC-ElGama加密体制 | 第30-32页 |
§3.2 超椭圆曲线签名方案 | 第32-35页 |
§3.3 基于超椭圆曲线的消息恢复签名方案 | 第35-37页 |
§3.4 超椭圆曲线密码的消息编码和除子压缩 | 第37-40页 |
§3.5 超椭圆曲线密码基本参数的紧致表示 | 第40-47页 |
§3.6 小结 | 第47-48页 |
第四章 子域安全超椭圆曲线的选取 | 第48-60页 |
§4.1 安全超椭圆曲线 | 第48-49页 |
§4.2 利用Weil猜想构造安全Jacobian | 第49-51页 |
§4.3 计算结果 | 第51-59页 |
§4.4 小结 | 第59-60页 |
第五章 HCDLP的Weil Descent代数攻击的分析 | 第60-73页 |
§5.1 Weil Descent代数攻击 | 第60-62页 |
§5.2 Weil Descent攻击的分析 | 第62-64页 |
§5.3 攻击实例及分析 | 第64-71页 |
§5.4 本章小结 | 第71-73页 |
第六章 一类超椭圆曲线Jacobian的快速标量乘 | 第73-84页 |
§6.1 GF(2~m)上g=2的一类超椭圆曲线 | 第73-76页 |
§6.2 GF(-2~m)上一类超椭圆曲线的快速运算 | 第76-80页 |
§6.3 进一步的讨论 | 第80-83页 |
§6.4 小结 | 第83-84页 |
结束语 | 第84-86页 |
参考文献 | 第86-94页 |
作者在攻读博士期间完成的论文及参加的科研 | 第94-96页 |