首页--数理科学和化学论文--数学论文--代数、数论、组合理论论文--代数方程论、线性代数论文--线性代数论文--矩阵论论文

矩阵多项式的极小多项式算法

摘要第1-5页
ABSTRACT第5-8页
第一章 绪论第8-12页
   ·研究背景及意义第8-9页
   ·矩阵代数的研究现状第9-10页
   ·本文主要内容第10-11页
   ·本文安排内容第11-12页
第二章 代数同态第12-22页
   ·商环与域第12-14页
   ·环的同态第14-16页
   ·多元多项式与理想第16-17页
   ·k -代数同态第17-20页
   ·极小多项式第20-21页
   ·本章小结第21-22页
第三章 GR(o|¨)BNER 基方法、特征列方法及结式方法第22-34页
   ·项序和除法算法第22-23页
   ·单项式理想和DICKSON引理第23-24页
   ·HILBERT 基定理和 GR(o|¨)EBNER基第24-25页
   ·GR(o|¨)EBNER 基的算法及约化GR(o|¨)EBNER基第25-27页
   ·消元定理第27-28页
   ·特征列方法第28-32页
   ·结式方法第32-33页
   ·本章小结第33-34页
第四章 矩阵多项式的极小多项式第34-46页
   ·矩阵同态的主要定理第34-36页
     ·GR(o|¨)BNER 基方法计算极小与公共极小多项式第36-41页
   ·特征列方法计算极小与公共极小多项式第41-43页
   ·结式方法计算极小多项式第43-45页
   ·本章小结第45-46页
第五章 结论与展望第46-47页
致谢第47-48页
参考文献第48-51页
附录第51-54页
攻读硕士期间取得的成果第54-55页

论文共55页,点击 下载论文
上一篇:关于模糊复分析几个基础问题研究
下一篇:基于新粗化思想的一种代数多重网格方法