首页--工业技术论文--金属学与金属工艺论文--金属学与热处理论文--金属腐蚀与保护、金属表面处理论文--各种金属及合金的腐蚀、防腐与表面处理论文

可降解镁金属腐蚀演变行为与表面改性研究

摘要第7-9页
Abstract第9-12页
Chapter 1 Introduction第18-33页
    1.1 The development of metallic biomaterials and the concept shift of bio-performance第18-20页
    1.2 The merits of biodegradable metallic biomaterials第20-21页
    1.3 The advantages of developing Mg-based, Fe-based and Zn-based materials asbiodegradation metals第21-22页
    1.4 The biodegradation mechanism and influencing factors第22-24页
    1.5 The key issues of biodegradable metals for biomedical application第24-25页
    1.6 Strategies adopted in the improvement of biodegradable metals第25-29页
        1.6.1 Bulk modification第25-27页
        1.6.2 Surface modification第27-29页
    1.7 Recent biomimetic modification of Mg-based biodegradable metals第29页
    1.8 Our strategies for modification of Mg-based biodegradable metals and dissertationstructure第29-33页
Chapter 2 Corrosion behavior of Mg, Fe and Zn in a long-term immersion degradationin phosphate buffered saline第33-58页
    2.2 Introduction第33-35页
    2.3 Experimental detail第35-37页
        2.3.1 Sample preparation第35页
        2.3.2 Electrochemical corrosion measurement第35-36页
        2.3.3 Immersion degradation test第36-37页
    2.4 Results第37-53页
        2.4.1 Electrochemical corrosion behavior第37-46页
        2.4.2 Immersion degradation behavior第46-49页
        2.4.3 Development of surface changes第49-53页
    2.5 Discussion第53-57页
    2.6 Conclusions第57-58页
Chapter 3 Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO_2) coatingon magnesium to enhance corrosion protection第58-72页
    3.2 Introduction第58-59页
    3.3 Experimental第59-62页
        3.3.1 Sample preparation第59-60页
        3.3.2 Characterization第60页
        3.3.3 Electrochemical corrosion measurement第60-61页
        3.3.4 Immersion degradation test第61-62页
    3.4 Results and discussion第62-71页
        3.4.1 Surface characterization第62-63页
        3.4.2 FTIR and XRD第63-65页
        3.4.3 Surface conductivity behavior第65页
        3.4.4 Electrochemical corrosion behavior第65-68页
        3.4.5 Immersion degradation behavior第68-71页
    3.5 Conclusions第71-72页
Chapter 4 Effectively covalent immobilization and deposition of phytic acid on Mg byalkaline pre-treatment to improve its corrosion and degradation behavior第72-86页
    4.2 Introduction第72-74页
    4.3 Materials and methods第74-76页
        4.3.1 Sample preparation第74页
        4.3.2 Characterization第74-75页
        4.3.3 Electrochemical corrosion measurement第75页
        4.3.4 Immersion tests第75-76页
        4.3.5 In vitro biocompatibility evaluation第76页
    4.4 Results第76-83页
        4.4.1 Surface characterization第76-77页
        4.4.2 FTIR第77-78页
        4.4.3 Electrochemical corrosion behavior第78-81页
        4.4.4 Immersion degradation behavior第81-82页
        4.4.5 Biocompatibility evaluation第82-83页
    4.5 Discussion第83-85页
    4.6 Conclusions第85-86页
Chapter 5 Corrosion-controlling and osteo-compatible Mg ion-integrated phytic acid(Mg-PA) coating on magnesium for bone implants application第86-113页
    5.2 Introduction第86-88页
    5.3 Materials and methods第88-93页
        5.3.1 Sample preparation第88页
        5.3.2 Magnesium ion-integrated phytic acid deposition第88-89页
        5.3.3 Characterization第89-90页
        5.3.4 Electrochemical corrosion test第90页
        5.3.5 Immersion degradation test第90-91页
        5.3.6 In vitro osteo-compatibility performance第91-93页
    5.4 Results and discussion第93-112页
        5.4.1 The formation mechanism of Mg ion-integrated PA layer第93-94页
        5.4.2 Surface characterization第94-97页
        5.4.3 Electrochemical corrosion behavior第97-99页
        5.4.4 Immersion degradation behavior第99-101页
        5.4.5 In vitro osteo-compatibility第101-112页
    5.5 Conclusions第112-113页
Chapter 6 In-situ incorporation of heparin/bivalirudin drugs into phytic acid coatingon magnesium for blood contacting implants application第113-140页
    6.2 Introduction第113-116页
    6.3 Experimental第116-121页
        6.3.1 Sample preparation第116-117页
        6.3.2 Characterization第117页
        6.3.3 Electrochemical corrosion test第117-118页
        6.3.4 Immersion degradation test第118页
        6.3.5 In vitro biocompatibility evaluation第118-120页
        6.3.6 In vivo animal study第120-121页
        6.3.7 Statistical analysis第121页
    6.4 Results第121-136页
        6.4.1 Surface characterization第121-124页
        6.4.2 Contact angle and surface energy第124-125页
        6.4.3 Electrochemical corrosion behaviour第125-127页
        6.4.4 Immersion degradation behaviour第127-128页
        6.4.5 In vitro biocompatibility evaluation第128-134页
        6.4.6 In vivo biocompatibility evaluation第134-136页
    6.5 Discussion第136-138页
    6.6 Conclusions第138-140页
Chapter 7 Hybrid scaffolds of Mg mesh reinforced polymer/ECM composite forpotential bone regeneration第140-150页
    7.2 Introduction第140-142页
    7.3 Experimental第142-145页
        7.3.1 Magnesium mesh fabrication第142-143页
        7.3.2 Fabrication of Mg mesh enhanced PLGA/DBM hybrid scaffold第143页
        7.3.3 Characterization第143页
        7.3.4 Rat bone mesenchymal stem cells (BMSCs) culture study第143-145页
    7.4 Results and discussion第145-149页
        7.4.1 Surface characterization第145-146页
        7.4.2 BMSCs proliferation第146-147页
        7.4.3 Osteogenic differentiation property of the scaffolds第147-149页
    7.5 Conclusions第149-150页
Chapter 8 Summary, scientific significance and perspective of this dissertation第150-156页
    8.1 Summary of this dissertation第150-152页
    8.2 Scientific significance of this dissertation第152-153页
    8.3 Perspective of this dissertation第153-156页
Acknowledgements第156-157页
References第157-179页
Publications第179-182页
附件第182页

论文共182页,点击 下载论文
上一篇:农村生活垃圾厌氧准好氧生物反应器填埋场稳定化研究
下一篇:超支化聚合物及核壳粒子改性环氧树脂研究