摘要 | 第1-4页 |
Abstract | 第4-7页 |
1 绪论 | 第7-14页 |
·课题的研究背景和意义 | 第7-8页 |
·国内外研究现状 | 第8-13页 |
·论文的主要工作及内容安排 | 第13-14页 |
2 电力负荷数据特性分析及数据预处理 | 第14-23页 |
·负荷的内在规律 | 第14-16页 |
·电力负荷的周期性 | 第14-16页 |
·电力负荷的连续性 | 第16页 |
·电力负荷的外在特性 | 第16-19页 |
·温度对负荷特性的影响 | 第16-17页 |
·降雨量对负荷特性的影响 | 第17-18页 |
·节假日对负荷特性的影响 | 第18-19页 |
·分时电价对负荷特性的影响 | 第19页 |
·数据的预处理 | 第19-21页 |
·数据预处理的意义和基本思想 | 第19页 |
·伪数据的修正 | 第19-20页 |
·伪数据预处理方法 | 第20-21页 |
·本章小结 | 第21-23页 |
3 基于LS-SVM的短期电力系统负荷预测 | 第23-43页 |
·SVM与LS-SVM的原理 | 第23-27页 |
·统计学习理论 | 第23-25页 |
·SVM回归原理 | 第25-26页 |
·最小二乘支持向量机原理 | 第26-27页 |
·基于LS-SVM的短期电力系统负荷预测 | 第27-33页 |
·无天气因素影响的预测模型 | 第27-32页 |
·含天气因素影响的预测模型 | 第32-33页 |
·基于人工免疫算法的参数优化 | 第33-42页 |
·参数优化问题的提出 | 第33页 |
·一般人工免疫算法 | 第33-37页 |
·免疫克隆选择算法 | 第37-40页 |
·算法的比较 | 第40-42页 |
·本章小结 | 第42-43页 |
4 基于小波变换与LS-SVM的短期电力系统负荷预测 | 第43-59页 |
·小波分析理论 | 第43-46页 |
·傅里叶分析 | 第43页 |
·短时傅里叶变换 | 第43页 |
·连续小波变换 | 第43-44页 |
·离散小波变换 | 第44-45页 |
·多分辨率分析 | 第45页 |
·二进正交小波变换的Mallat算法 | 第45-46页 |
·基于小波变换与LS-SVM短期负荷预测建模 | 第46-47页 |
·基于小波变换与LS-SVM的无天气因素影响的短期负荷预测 | 第47-54页 |
·边界延拓 | 第47-48页 |
·小波基的选取 | 第48-51页 |
·小波尺度的选取 | 第51-53页 |
·输入量的选取 | 第53-54页 |
·基于小波变换与LS-SVM的含天气因素影响的短期负荷预测 | 第54-57页 |
·小波基的选取 | 第54-56页 |
·小波尺度的选取 | 第56-57页 |
·输入量的选取 | 第57页 |
·与神经网络的比较 | 第57-58页 |
·本章小结 | 第58-59页 |
5 总结与展望 | 第59-61页 |
·研究工作总结 | 第59页 |
·工作展望 | 第59-61页 |
致谢 | 第61-62页 |
参考文献 | 第62-65页 |