首页--农业科学论文--农作物论文--禾谷类作物论文--麦论文--小麦论文

基于无人机遥感技术的小麦高通量表型分析及其在QTL定位中的应用

摘要第6-7页
Abstract第7-8页
Dedication第9-10页
Abbreviations第10-18页
Chapter1:General introduction and litrature review第18-33页
    1.1.General introduction第18-22页
        1.1.1.Field-based phenotyping is a bottleneck for crop improvement第19页
        1.1.2.Role of phenotyping in breeding activities第19-21页
        1.1.3.Phenotyping in context of genetic gain第21-22页
    1.2.High throughput phenotyping techniques第22-28页
        1.2.1.High throughput phenotyping platforms第23-24页
        1.2.2.Sensors deployed on UAVs第24-26页
            1.2.2.1.Digital RGB Camera第24页
            1.2.2.2.Multispectral sensors第24-25页
            1.2.2.3.Thermal Infrared Imaging Sensor第25页
            1.2.2.4.LIDAR第25-26页
        1.2.3.UAV based traits第26-28页
            1.2.3.1.Morphological traits第26页
            1.2.3.2.Spectral reflectance based physiological traits第26-27页
            1.2.3.3.Crop stress detection and yield prediction第27-28页
    1.3.High throughput phenotyping for genetic gain第28-30页
        1.3.1.Increasing throughput and accuracy in phenotyping第28-29页
        1.3.2.Affordable phenotyping systems第29-30页
        1.3.3.Quality of field trials第30页
    1.4.Objectives and rationale of the study第30-32页
    1.5.Method layout of the study第32-33页
Chapter2:Rapid monitoring of NDVI across the wheat growth cycle for phenotypic selection and grain yield prediction第33-51页
    2.1.Introduction第34-35页
    2.2 Material and Methods第35-39页
        2.2.1.Germplasm and field trials第35-36页
        2.2.2.Multi-spectral platform and imagery campaign第36-37页
        2.2.3.Orthomosaic generation,segmentation and extraction of pixel values第37-38页
        2.2.4.Estimation of UAV-NDVI,NDRE and NGRDI第38页
        2.2.5.Ground data collection and statistical analysis第38-39页
    2.3 Results第39-47页
        2.3.1.Assessment of UAV platform data accuracy第39-41页
        2.3.2.Correlations between vegetative indices,biomass and grain yield第41-45页
        2.3.3.Accuracy of UAV-platform for yield prediction第45页
        2.3.4.Assessment of water treatments impact from UAV-NDVI第45-47页
    2.4 Discussion第47-50页
        2.4.0.Comparison of UAV and Greenseeker第47页
        2.4.1.UAV-data accuracy for biomass and yield prediction第47-48页
        2.4.2.Significance of NDVI monitoring for yield prediction第48-49页
        2.4.3.Detection of drought effect on NDVI and yield第49-50页
    2.5.Conclusions第50-51页
Chapter3:Time-series multispectral indices from UAV-based imagery reveal senescence rate in bread wheat第51-70页
    3.1.Introduction第52-53页
    3.2.Material and Methods第53-58页
        3.2.1.Germplasm第53页
        3.2.2.Experimental design第53-54页
        3.2.3.UAV platform and flight mission第54-55页
        3.2.4.Data acquisition Schedule第55页
        3.2.5.Image processing and data extraction第55-56页
        3.2.6.Estimation of narrowband SVIs and senescence rate第56-57页
        3.2.7.Collection of ground morphological data第57页
        3.2.8.Statistical analysis第57-58页
    3.3.Results第58-67页
        3.3.1.Accuracy of SVI data to predict growth status第58-62页
        3.3.2.Estimates of variance components and correlations among SVIs and yield traits第62-63页
        3.3.3.Dynamics and interaction of SVIs during different growth stages第63-65页
        3.3.4.Impact of senescence rate on yield and performance of genotypes第65-67页
    3.4.Discussion第67-69页
        3.4.1.Validation of SVI Data at different growth stages第67页
        3.4.2.Genotypic variation and traits correlation第67-68页
        3.4.3.Dynamics of SVIs explained interaction between growth stages第68页
        3.4.4.Impact of senescence rate on yield第68-69页
        3.4.5.Cultivars with low senescence rate第69页
    3.5.Conclusions第69-70页
Chapter4:Accuracy assessment of UAV-based plant height for quantitative genomic analysis in bread wheat第70-85页
    4.1.Introduction第71-72页
    4.2.Material and Methods第72-76页
        4.2.1.Germplasm and experimental design第72页
        4.2.2.Remote sensing campaign,mosaicking and DSM generation第72-73页
        4.2.3.DSM evaluation and plant height model(PHM)development第73-74页
        4.2.4.Estimation and validation of UAV-based plant heights第74-75页
        4.2.5.SNP genotyping,QTL analysis and genomic prediction第75-76页
        4.2.6.Statistical analysis第76页
    4.3 Results第76-81页
        4.3.1.Accuracy assessment of UAV-based plant height第76-78页
        4.3.2.Phenotypic variation第78页
        4.3.3.Identification of QTL and their impact on phenotype第78-79页
        4.3.4.Validation of UAV-based QTL results第79-80页
        4.3.5.Genomic prediction accuracy of UAV-based data set第80-81页
    4.4.Discussion第81-83页
        4.4.1.Accuracy and phenotypic variations in UAV-based plant height第81-82页
        4.4.2.UAV-based QTLs and their effects on phenotype第82-83页
        4.4.3.Accuracy of UAV-base QTL第83页
        4.4.4 Accuracy of UAV-bead plant height for genomic prediction第83页
    4.5 Conclusions第83-85页
Chapter5.General discussion and concluding remarks第85-89页
References第89-101页
Addendix第101-107页
Acknoweledgement第107-108页
CURRICULUM VITAE第108-110页
附件第110-112页

论文共112页,点击 下载论文
上一篇:基于可抛弃式电极的食品中过氧化物电化学快速检测方法研究
下一篇:在新型DES中氧化糠醛制备马来酸和富马酸