首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机软件论文--程序设计、软件工程论文--程序设计论文

多产球员的挖掘:超越常规措施

摘要第5-7页
ABSTRACT第7-9页
List of Acronyms第17-20页
Chapter 1 Introduction第20-36页
    1.1 Motivation and Significance第20-23页
        1.1.1 Challenges to Sports Data Mining第21-22页
        1.1.2 Audience of Sports Data Mining第22页
        1.1.3 Sports Research Associations第22-23页
    1.2 Cricket Game第23-27页
        1.2.1 Basic Concepts of Cricket第23-26页
        1.2.2 Brief overview of Cricket History第26-27页
    1.3 The Challenges to Design Cricket Sabermetrics第27-28页
    1.4 Problem Description第28-31页
    1.5 Proposed Approach第31-33页
        1.5.1 Supervised Machine Learning (SML) Approach第32-33页
        1.5.2 Random Walk Based Approach第33页
    1.6 Contributions of the Dissertation第33-34页
    1.7 Dissertation Structure and Organization第34-36页
Chapter 2 Basic Concepts and Tools第36-60页
    2.1 Background Study第36-41页
        2.1.1 Evolution of Sports Data Mining第36-38页
        2.1.2 Road Map to Cricket Sabermetrics第38-41页
    2.2 Related Works第41-47页
        2.2.1 Evaluation of Players Performance第41-45页
        2.2.2 Evaluation of Teams Performance第45-47页
    2.3 Data Mining Tools and Statistical Foundations第47-58页
        2.3.1 Cricket Data Repositories第47-48页
        2.3.2 Data Mining Tools第48-49页
        2.3.3 Supervised Machine Learning (SML)第49-54页
        2.3.4 PageRank (PR)第54-55页
        2.3.5 Statistical Evaluation measures第55-58页
    2.4 Summary第58-60页
Chapter 3 Rising Stars Prediction via Cooperative Co-players第60-96页
    3.1 Unveiling Rising Stars第60-64页
    3.2 Cricket Game第64-65页
    3.3 Problem Definition第65-66页
        3.3.1 Rising Star Prediction第65-66页
        3.3.2 Objective第66页
    3.4 Supervised Machine Learning Models第66-67页
        3.4.1 Feature Evaluation Metrics第66页
        3.4.2 Performance Evaluation Metrics第66-67页
    3.5 Conceptualizing Co-players第67-74页
    3.6 Experimental setup and Performance Evaluations第74-90页
        3.6.1 Acquisition of Dataset第74-77页
        3.6.2 Statistical Distribution of Features第77-78页
        3.6.3 Evaluation of incorporated Features第78-80页
        3.6.4 Performance Evaluation第80页
        3.6.5 Analysis of Individual Feature第80-84页
        3.6.6 Category based Analysis第84-87页
        3.6.7 Analysis of Incorporated SML Models第87-90页
    3.7 Standings of Rising Stars第90-94页
        3.7.1 Batting Domain第90-91页
        3.7.2 Bowling Domain第91-94页
    3.8 Summary第94-96页
Chapter 4 Stars Cricketers Prediction via Performance Evolution第96-126页
    4.1 Unveiling Star Cricketers第96-100页
    4.2 Ranking Measurement第100-101页
    4.3 Problem Description第101-102页
        4.3.1 Star Cricketers Prediction第101-102页
        4.3.2 Objective Function第102页
    4.4 Machine Learning Classifiers第102-110页
        4.4.1 Feature Assessment Metrics第102页
        4.4.2 Performance Assessment Metrics第102-103页
        4.4.3 Features Formation第103-110页
    4.5 Experiments and Evaluations第110-121页
        4.5.1 Dataset第111-113页
        4.5.2 Statistical Distribution第113-114页
        4.5.3 Assessment of Features第114-115页
        4.5.4 Performance Check第115页
        4.5.5 Individual Feature wise Assessment第115-117页
        4.5.6 Category wise Assessment第117-119页
        4.5.7 Models wise Assessment第119-121页
    4.6 Standings of Star Cricketers第121-123页
        4.6.1 Batting Domain第121-122页
        4.6.2 Bowling Domain第122-123页
    4.7 Summary第123-126页
Chapter 5 Quantifying Cricket Teams Precedence第126-152页
    5.1 Unveiling Teams Rating第126-129页
    5.2 Prevalent Works and Highlights of their Limitations第129-130页
    5.3 Towards Productivity Measurement第130-140页
        5.3.1 Cricket Teams Network第130-131页
        5.3.2 Productivity Metrics第131-132页
        5.3.3 Formulation of Incorporated Features第132-140页
    5.4 Productivity Measurement第140-143页
        5.4.1 Productivity Computation第140-141页
        5.4.2 Productivity Precedence Algorithm (PPA)第141-143页
    5.5 Experimental Setup and Evaluations第143-150页
        5.5.1 Dataset Acquisition第143页
        5.5.2 Discussion of Results第143-150页
    5.6 Summary第150-152页
Chapter 6 Conclusions and Potential Future Directions第152-158页
    6.1 Research Insights第152-155页
    6.2 Potential Future Recommendations第155-158页
Bibliography第158-166页
Acknowledgement第166-168页
List of Publications第168-169页

论文共169页,点击 下载论文
上一篇:信息中心网络缓存性能优化机制
下一篇:基于数据特征的Android恶意应用检测关键技术研究