首页--工业技术论文--原子能技术论文--加速器论文--储存环(对头碰)论文

基于杜克电子储存环的束流内部散射效应的实验研究

Abstract第5-7页
List of Abbreviations and Symbols第22-25页
Acknowledgements第25-27页
1 Introduction第27-39页
    1.1 Overview第27-28页
    1.2 History of synchrotron radiation light source第28-32页
    1.3 Brightness improvement for the storage ring based light sources第32-35页
    1.4 Motivation第35-37页
    1.5 Overview of the Dissertation第37-39页
2 Theory of synchrotron radiation第39-77页
    2.1 Introduction第39-40页
    2.2 Single electron synchrotron radiation from dipole magnet第40-51页
        2.2.1 Potential formulation of electromagnetic field第40-41页
        2.2.2 Lienard-Wiechart potentials of charged single particle第41-43页
        2.2.3 Electromagnetic field of a moving electron with relativisticvelocity第43-46页
        2.2.4 Electric and magnetic field from an electron moving in a bend-ing magnet第46-51页
    2.3 The power and energy of synchrotron radiation第51-66页
        2.3.1 Angular spectral power distribution of synchrotron radiation第51-55页
        2.3.2 Total power and energy第55-59页
        2.3.3 Spectral power distribution第59-62页
        2.3.4 Angular power distribution第62-66页
    2.4 Brief review of undulator radiation第66-71页
        2.4.1 Planar weak undulator第66-70页
        2.4.2 Helical undulator第70-71页
    2.5 Beam emittance and profile in a storage ring第71-76页
        2.5.1 Beam emittance第73-74页
        2.5.2 Beam size第74-75页
        2.5.3 Non-zero current beam size第75-76页
    2.6 Summary第76-77页
3 Methods of measuring transverse beam profile in the storage ring第77-89页
    3.1 Introduction第77-78页
    3.2 Direct imaging using visible/UV synchrotron radiation第78-80页
        3.2.1 Experimental setup of direct imaging method第79-80页
    3.3 Imaging method using x-ray pinhole第80-83页
        3.3.1 Experimental setup of x-ray pinhole imaging method第81页
        3.3.2 System resolution of x-ray pinhole imaging method第81-83页
    3.4 Synchrotron radiation interferometry imaging using visible light第83-87页
        3.4.1 Setup of synchrotron radiation interferometry beam profilesystem第83-84页
        3.4.2 Principle of synchrotron radiation interferometry第84-86页
        3.4.3 System resolution of SR interferometry第86-87页
    3.5 Conclusion第87-89页
4 Transverse beam profile measurement system for the Duke storage ring第89-117页
    4.1 Introduction第89-91页
    4.2 Characterization of the system第91-99页
        4.2.1 Transverse beam profile measurement system第92-93页
        4.2.2 Focal length of the lens第93-95页
        4.2.3 Characterization of the CCD camera第95-99页
    4.3 Optimization of the horizontal aperture第99-105页
    4.4 System resolution estimation第105-111页
        4.4.1 Diffraction effects第105-108页
        4.4.2 Geometric effects第108-110页
        4.4.3 Pixel Size第110页
        4.4.4 Numerical estimates第110-111页
        4.4.5 Discussion第111页
    4.5 First Beam Study Results第111-114页
    4.6 Discussion and Summary第114-117页
5 Transverse emittance growth in a storage ring第117-127页
    5.1 Introduction第117-118页
    5.2 Basic physics第118-119页
    5.3 Transverse beam emittance growth with beam current第119-122页
    5.4 Reducing the IBS effect第122-123页
    5.5 Impact of bunch lengthening due to microwave instability第123-127页
6 Experimental study on the beam emittance growth caused by theintrabeam scattering effect第127-163页
    6.1 Introduction第127-129页
    6.2 Beam current calibration at low beam current第129-137页
        6.2.1 Beam current readings of the DCCT第129-132页
        6.2.2 Low beam current calibration based on image intensity第132-134页
        6.2.3 Relationship between the horizontal beam size and beam cur-rent at 533 MeV第134-137页
    6.3 Current dependent beam size at multiple energies第137-145页
        6.3.1 Beam size measurement results at multiple energies第137-139页
        6.3.2 Minimum beam size scaling with beam energy第139-141页
        6.3.3 Measured emittance based on measured beta function第141-145页
    6.4 Vertical beam size with coupling第145-149页
    6.5 Beam coupling as a function of beam current第149-153页
    6.6 Longitudinal profile measurement第153-157页
        6.6.1 Bunch length measurement system第153-156页
        6.6.2 Bunch length measurement results第156-157页
    6.7 Comparison between measurement and simulation results第157-159页
    6.8 Summary第159-163页
7 FEL wiggler bussbar field compensation第163-173页
    7.1 Introduction第163-164页
    7.2 Orbit Compensation Scheme第164-166页
    7.3 Effect of bussbar field on beam orbit第166-169页
    7.4 Bussbar field compensation results第169-170页
    7.5 Conclusion第170-173页
8 Summary第173-178页
    8.1 Transverse beam profile measurement system第173-174页
    8.2 Experimental study of intrabeam scattering effect in the Duke storage ring第174-175页
    8.3 Bussbar field compensation第175-176页
    8.4 Future work第176-178页
Reference第178-192页
Biography第192-194页
摘要第194-204页

论文共204页,点击 下载论文
上一篇:EAST下偏滤器结构优化设计与关键技术研究
下一篇:位置灵敏中子探测实验中的大规模信号读出方法研究