首页--数理科学和化学论文--数学论文--代数、数论、组合理论论文--组合数学(组合学)论文--图论论文

图的染色与划分问题研究

Abstract第6-8页
摘要第9-12页
Chapter 1 Preliminary第12-21页
    1.1 Some basic definitions and notations第12-14页
    1.2 Edge coloring and vertex coloring第14-17页
    1.3 Judicious partition of graphs第17-19页
    1.4 Balanced partition of graphs第19-21页
Chapter 2 Edge coloring of 1-planar graphs第21-32页
    2.1 Introduction第21-22页
    2.2 Basic definitions and lemmas第22-26页
    2.3 Proof of Theorem 2.1.1第26-32页
Chapter 3 3-choosability of plane graphs第32-38页
    3.1 Introduction第32-33页
    3.2 Plane graphs without cycles of length from 4 to 6第33-35页
    3.3 Plane graphs without cycles of length from 4 to 5第35-38页
Chapter 4 Injective coloring of planar cubic graphs第38-52页
    4.1 Introduction第38-40页
    4.2 Connectivity of minimum counterexamples第40-52页
Chapter 5 Judicious partition of graphs and r-uniform hypergraphs第52-67页
    5.1 Introduction第52-55页
    5.2 Judicious partition of r-uniform hypergraphs第55-62页
    5.3 Judicious partition of graphs第62-67页
Chapter 6 Balanced parititions of graphs第67-80页
    6.1 Introduction第67-69页
    6.2 Max bisections of graphs第69-72页
    6.3 Finding a maximum matching with some properties第72-77页
    6.4 Judicious balanced k-partition of graphs第77-80页
Bibliography第80-87页
Papers published and completed in the period of Ph. D. Education第87-88页
Acknowledgements第88页

论文共88页,点击 下载论文
上一篇:满足非线性边值条件的哈密顿系统的解
下一篇:若干偏微分方程与代数偏微分方程的保结构算法