首页--数理科学和化学论文--数学论文--数学分析论文--微分方程、积分方程论文

分数阶微分方程组数值算法研究

摘要第1-5页
ABSTRACT第5-10页
第一章 绪论第10-13页
   ·引言第10页
   ·研究背景及现状第10-12页
   ·本文的主要内容第12-13页
第二章 分数阶微分第13-21页
   ·两种特殊的函数第13页
   ·分数阶微积分定义第13-18页
     ·分数阶微积分的提出第13-14页
     ·Riemann-Liouville(简称 R-L)分数阶微积分定义第14-16页
     ·Grunwald-Letnikov(简称 G-L)分数阶微积分定义第16-17页
     ·Caputo 分数阶微积分定义第17页
     ·分数阶微积分运算各种定义小结第17-18页
   ·分数阶微积分性质第18-19页
   ·分数阶微积分与整数阶微积分的比较第19-20页
   ·本章小结第20-21页
第三章 “高阶”分数阶微分方程组转换成“多变量”分数阶微分方程组第21-25页
   ·引言第21页
   ·“高阶”分数阶微分方程转换成“多变量”分数阶微分方程组第21-22页
   ·对多变量分数阶微分方程组存在和唯一性证明第22-25页
第四章 二元分数阶控制系统的数值算法及仿真第25-32页
   ·引言第25页
   ·准备知识第25页
   ·不带时滞二元分数阶控制系统数值算法及仿真第25-28页
     ·系统的描述第25-26页
     ·不带时滞二元分数阶系统数值算法第26-27页
     ·举例及仿真第27-28页
   ·带时滞的二元分数阶控制系统数值算法及仿真第28-30页
     ·系统的描述第28页
     ·带时滞分数阶系统数值算法第28-30页
     ·举例及仿真第30页
   ·本章小结第30-32页
第五章 多元分数阶系统数值算法研究及仿真第32-42页
   ·引言第32页
   ·准备知识第32页
   ·不带时滞多元分数阶控制系统数值算法及仿真研究第32-37页
     ·系统的描述第32-33页
     ·多元不带时滞分数阶控制系统算法第33-36页
     ·举例及其仿真第36-37页
   ·带时滞多元分数阶控制系统算法研究及仿真第37-40页
     ·系统的描述第37-38页
     ·多元分数阶控制系统算法第38-39页
     ·举例及仿真第39-40页
   ·本章小结第40-42页
第六章 实例仿真程序附录第42-47页
结束语第47-48页
参考文献第48-50页
攻读硕士学位期间所发表和撰写的论文第50页
参加的课题与项目第50-51页
致谢第51页

论文共51页,点击 下载论文
上一篇:生物多样性信息共享与服务平台设计与实现
下一篇:基于神经网络的含时滞非线性系统的自适应控制和模糊隶属函数生成方法