大跨度桥梁颤抖振分析
摘要 | 第1-5页 |
Abstract | 第5-12页 |
1 绪论 | 第12-28页 |
·研究背景 | 第12-14页 |
·大跨度桥梁的研究背景 | 第12-13页 |
·桥梁结构风致振动的研究背景 | 第13-14页 |
·桥梁结构颤抖振研究现状 | 第14-19页 |
·颤振分析 | 第14-16页 |
·抖振频域分析 | 第16-18页 |
·非线性抖振时程分析 | 第18-19页 |
·桥梁结构颤振导数研究现状 | 第19-22页 |
·颤振导数概念 | 第19-20页 |
·颤振导数识别 | 第20-22页 |
·场模拟研究现状 | 第22-25页 |
·谱表示法与AR法的联系 | 第23-24页 |
·原型谱表示法研究现状 | 第24页 |
·特征正交谱分解型谱表示法研究现状 | 第24-25页 |
·线性滤波法 | 第25页 |
·自锚式斜拉-悬索协作体系桥的研究现状 | 第25-26页 |
·不足之处 | 第26页 |
·本文主要工作 | 第26-28页 |
2 风场模拟 | 第28-50页 |
·谐波合成法 | 第28-31页 |
·单频率索引法 | 第28-30页 |
·双频率索引法 | 第30-31页 |
·特征正交分解型谱法 | 第31-34页 |
·谱特征变换法 | 第31-33页 |
·相关函数特征变换(CPT) | 第33-34页 |
·POD型谱表示法 | 第34页 |
·AR线性滤波法 | 第34-36页 |
·Solari理论 | 第34-35页 |
·Iwatani理论 | 第35-36页 |
·脉动风谱的选取 | 第36-37页 |
·纵向脉动风谱 | 第36-37页 |
·竖向脉动风谱 | 第37页 |
·脉动风的空间相关函数 | 第37-39页 |
·Davenport指数表达式 | 第37-38页 |
·Krenk修正的指数表达式 | 第38-39页 |
·Shiotani指数表达式 | 第39页 |
·桥塔效应的计入 | 第39-41页 |
·桥塔风效应的概率模型 | 第39-40页 |
·POD考虑桥塔风效应简化模拟公式 | 第40-41页 |
·风场模拟结果的数值检验 | 第41-43页 |
·均值检验 | 第41-42页 |
·根方差检验 | 第42页 |
·功率谱密度函数检验 | 第42-43页 |
·相关函数检验 | 第43页 |
·算例分析 | 第43-48页 |
·小结 | 第48-50页 |
3 桥梁断面的颤振导数识别 | 第50-66页 |
·概述 | 第50页 |
·传统的颤振导数识别的分析模型 | 第50-53页 |
·系统模态参数识别的小波法 | 第53-55页 |
·小波变换定义 | 第53页 |
·Morlet小波 | 第53页 |
·Morlet小波参数识别方法 | 第53-55页 |
·颤振导数的小波识别法 | 第55页 |
·经验模态分解 | 第55-56页 |
·系统参数识别的随机子空间法 | 第56-63页 |
·模态参数识别的力学模型 | 第56-60页 |
·基于数据驱动的随机子空间系统识别 | 第60-62页 |
·改进随机子空间法 | 第62-63页 |
·算例分析 | 第63-65页 |
·小结 | 第65-66页 |
4 大跨度桥耦合颤振频域分析 | 第66-102页 |
·双模态耦合颤振分析 | 第66-71页 |
·双模态颤振的闭合解 | 第66-70页 |
·简化的闭合解和临界颤振风速 | 第70-71页 |
·算例分析 | 第71-93页 |
·简支薄板算例 | 第71-75页 |
·大连湾跨海大桥方案桥颤振分析 | 第75-86页 |
·苏通大桥颤振分析 | 第86-89页 |
·虎门大桥颤振分析 | 第89-91页 |
·鄂东大桥颤振分析 | 第91-93页 |
·多模态耦合颤振分析 | 第93-98页 |
·PK-F法 | 第95-96页 |
·算例分析 | 第96-98页 |
·全模态颤振分析方法 | 第98-100页 |
·基本理论 | 第98-99页 |
·具有双参数搜索的全模态颤振分析方法 | 第99-100页 |
·具有单参数搜索的全模态颤振分析方法 | 第100页 |
·小结 | 第100-102页 |
5 修正分步分析法与典型桥梁断面的颤振机理研究 | 第102-128页 |
·引言 | 第102页 |
·分步分析法 | 第102-105页 |
·运动方程 | 第102-103页 |
·Step-by-step分析 | 第103-105页 |
·复模态(CEVA)和分步分析(SBSA)的比较 | 第105-110页 |
·分支特性 | 第105页 |
·SBSA的优点 | 第105-106页 |
·修正的SBSA | 第106-107页 |
·Alternative修正的SBSA | 第107-108页 |
·算例 | 第108-110页 |
·典型断面驱动机理和颤振形态 | 第110-127页 |
·流线型平板断面 | 第110-114页 |
·关于颤振分支跳转的讨论 | 第114-117页 |
·闭口钢箱梁断面 | 第117-120页 |
·边主梁断面 | 第120-122页 |
·分离双箱梁主梁断面 | 第122-124页 |
·桁架主梁断面 | 第124-126页 |
·桥梁断面颤振机理 | 第126-127页 |
·小结 | 第127-128页 |
6 多模态耦合抖振响应频域分析与三维抖振时域分析 | 第128-150页 |
·概述 | 第128页 |
·多模态耦合抖振 | 第128-135页 |
·基本理论 | 第128-133页 |
·算例分析 | 第133-135页 |
·抖振时域气动力模型 | 第135-143页 |
·静风力 | 第135-136页 |
·抖振力 | 第136-137页 |
·自激力 | 第137-143页 |
·三维抖振分析及其在ANSYS中实现 | 第143-149页 |
·运动方程的建立 | 第143-144页 |
·自激力的有限元模型 | 第144-146页 |
·抖振时域分析在ANSYS中实现 | 第146-147页 |
·算例分析 | 第147-149页 |
·小结 | 第149-150页 |
7 自锚式斜拉—悬索协作体系桥的静风响应分析 | 第150-165页 |
·概述 | 第150-151页 |
·静风位移响应及静风失稳分析步骤 | 第151-152页 |
·大连市金州海湾大桥 | 第152-158页 |
·方案桥布置图 | 第152-153页 |
·空间有限元模型的建立 | 第153页 |
·静风响应的计算模式 | 第153-154页 |
·自锚式协作体系的静风位移 | 第154-157页 |
·金州海湾大桥成桥状态的静风稳定分析 | 第157-158页 |
·大连湾跨海大桥 | 第158-164页 |
·方案桥布置图 | 第158-159页 |
·空间有限元模型的建立 | 第159-160页 |
·静风位移 | 第160-162页 |
·静风稳定性分析 | 第162-164页 |
·小结 | 第164-165页 |
结论 | 第165-168页 |
1 本文研究工作 | 第165-166页 |
2 研究展望 | 第166-168页 |
参考文献 | 第168-178页 |
攻读博士学位期间发表学术论文情况 | 第178-179页 |
创新点摘要 | 第179-180页 |
致谢 | 第180-181页 |