首页--生物科学论文--细胞生物学论文

形态发生过程中InR/Akt/TORC1信号通路负调控JAK/STAT活性从而参与细胞的命运决定

Abstract第6-7页
中文摘要第8-10页
Abbreviations第10-13页
Introduction第13-51页
    1 The concept of morphogen第13-26页
        1.1 The example of morphogen第14-17页
            1.1.1 Examples of morphogen in Drsophila第15-16页
            1.1.2 Examples of morphogen in other organisms第16-17页
        1.2 Gradient formation and movement第17-22页
            1.2.1 Transport Model 1:Free diffusion第18-19页
            1.2.2 Transport Model 2:Hindered diffusion第19页
            1.2.3 Transport Model 3:Facilitated diffusion and shuttling第19-20页
            1.2.4 Transport Model 4: Planar transcytosis第20页
            1.2.5 Transport Model 5:Cytonemes第20-22页
        1.3 Gradient interpretation第22-26页
            1.3.1 The intracellular transduction of gradient signal第22-24页
            1.3.2 Morphogen gradient determines cell identity through the level of transcriptionaleffector activated第24-25页
            1.3.3 Strategies employed in the regulation of differentially responsive genes第25-26页
    2 The specification of border cells in the ovary of Drosophila melanogaster第26-41页
        2.1 The overview of oogenesis第27-31页
            2.1.1 The germarium第27-28页
            2.1.2 The vitellarium第28-31页
        2.2 Border cell specification第31-41页
            2.2.1 Temporal control mechanisms of migratory border cell第31-32页
            2.2.2 The spatial patterning of migratory border cell第32-39页
            2.2.3 The integration of temporal and spatial signals in border cell migration第39-41页
    3 The SOCS proteins第41-48页
        3.1 The structure of SOCS family proteins第41-43页
        3.2 The function of SOCS family proteins第43-44页
        3.3 The stability and degradation of SOCS family proteins第44-45页
        3.4 The roles of SOCS36E in border cell specification of Drosophila第45-48页
    4 The Drosophila insulin signaling pathway through Aktl and TORC1第48-51页
        4.1 The cascade of InR/Aktl/TORC1 signaling pathway第48-50页
        4.2 The roles of DLnR/DAktl/DTor signaling pathway inDrosophila developmental events第50-51页
Chapter 1 Loss of DAkt function in Drosophila anterior follicle cells lead to ectopic border cells following the normal border cell cluster第51-58页
    Results第54-58页
        1.1 Loss of Akt function in anterior follicle cells through mosaic analysis lead to border cellmigration delay第54-55页
        1.2 Additional cells located behind normal border cells, which is subsequently demonstratedas border cells, are observed in Akt mosaic clones第55-58页
Chapter 2 The phenotype of ectopic border cells in DAkt mosaic clones is attributed to the increased activity of STAT by the reduction of SOCS36E protein level第58-67页
    Results第60-67页
        2.1 The enhancement of STAT activity is observed in Akt mutant clones第61-62页
        2.2 Egg chamber development in wild type ovary and STAT, Eya and Apt protein expressionpattern in wild type during different stages第62-64页
        2.3 The increased expression of Apt and Eya, which are molecules in JAK/STAT signalingpathway, is found in Akt mutant clones第64-65页
        2.4 The rising activity of STAT in Akt mutant clones is induced by the reduction of SOCS36Eprotein level第65-67页
Chapter 3 The same phenotype is shown in both DInR and DTor mosaic clones suggests that InR/Akt/Tor signaling pathway plays essential roles in border cell specification第67-73页
    3.1 Additional border cells are observed in InR and TOR mutant clones第68-70页
        3.1.1 InR mosaic clones show similar phenotype to Akt mutant clones indicates InR isupstream of Akt in specifying border cell cluster第68页
        3.1.2 Akt kinase optimizes border cell number through TOR第68-70页
    3.2 Increased STAT activity is observed both in InR and TOR mutant clones第70页
    3.3 The increased protein level of Eya and Apt are also observed in both InR and TOR mutantborder cells第70-71页
    3.4 The reduction of SOCS36E protein levels both in InR and TOR mutant clones lead to therising STAT activity第71-73页
        3.4.1 Decreased SOCS36E protein level are shown in mutant follicle cells expressingdecreased InR and TOR第71-72页
        3.4.2 Colocaliization of increased STAT activity and down regulated SOCS36E in InRand TOR mutant clones are shown第72-73页
Chapter 4 The phenotype is verified in downregulated molecules involving Insulin signaling pathway using RNAi knock down technique第73-82页
    4.1 Downregulation of TorC1 instead of TORC2 using RNA interference cause ectopic bordercell formation第74-77页
    4.2 Downregulation of InR, Akt, and Raptor using RNA interference cause ectopic border cellformation第77-79页
    4.3 Less anterior follicle cells are turn to be border cells in downregulated expression of Ptenand Tscl/Tsc2 using RNAi knock down, respectively第79-80页
    4.4 Up or down regulation of SOCS36E rescued the phenotype caused by InR/Akt/Raptor orPten/Tscl RNAi第80-82页
Chapter 5 InR/Akt/TORCl pathway promotes the protein stability of SOCS36E第82-90页
    5.1 Increase of SOCS36E protein level is not resulted from TORC1's translation promotingfunction第83-85页
    5.2 The InR/Akt/TORC1 signaling pathway promotes the protein stability第85-87页
    5.3 TORC1 interacts with SOCS36E and inhibits its proteasomal degradation第87-90页
Discussion第90-92页
Materials and Methods第92-101页
References第101-112页
Acknowledgement第112-113页
Publication第113-115页

论文共115页,点击 下载论文
上一篇:拓扑绝缘体横向异质结与二类狄拉克半金属的生长与物性研究
下一篇:转录因子Apontic调控果蝇神经和翅发育的机理研究