首页--工业技术论文--自动化技术、计算机技术论文--自动化基础理论论文--人工智能理论论文

进化多目标稀疏重构和集成学习

摘要第5-8页
ABSTRACT第8-11页
Symbols第23-24页
Abbreviations第24-29页
Chapter 1 Introduction第29-47页
    1.1 Background of related topics第29-42页
        1.1.1 Constrained optimization problems (COPs)第29-31页
        1.1.2 Large scale optimization第31-37页
        1.1.3 Sparse reconstruction第37-41页
        1.1.4 Classifier ensemble第41-42页
    1.2 Motivations第42-43页
    1.3 Contributions第43-45页
    1.4 Layout of this thesis第45-47页
Chapter 2 A novel selection evolutionary strategy for constrained optimization第47-79页
    2.1 Related work第48-53页
    2.2 Proposed approach第53-66页
        2.2.1 The distribution characteristics of individuals in a population第54-57页
        2.2.2 Design of the proposed algorithm第57-65页
        2.2.3 Analysis of time complexity第65-66页
    2.3 Experimental results第66-77页
    2.4 Concluding remarks第77-79页
Chapter 3 Decomposition method for LSO based on mixed second order par-tial derivatives第79-95页
    3.1 Mixed second order partial derivatives decomposition method第79-87页
        3.1.1 Problem definitions第79-82页
        3.1.2 Theoretical foundation for interaction and independence of vari-ables第82-84页
        3.1.3 Derived interaction criterion第84-85页
        3.1.4 Relationship between the proposed method, DG and CCVIL第85-86页
        3.1.5 Proposed algorithms based on IS criterion第86-87页
    3.2 Experimental results and discuss第87-90页
    3.3 Concluding remarks第90-95页
Chapter 4 Evolutionary multi-objective optimization for compressed sensingproblems第95-123页
    4.1 Multi-objective approach to sparse reconstruction第95-106页
        4.1.1 Soft-thresholding local search第97-103页
        4.1.2 Selection operator第103页
        4.1.3 Finding knee areas第103-106页
    4.2 Experiments and discussions第106-121页
        4.2.1 Existence of knee areas and best compromise between two con-flicting objectives第107-117页
        4.2.2 Comparison of StEMO against other methods第117-121页
    4.3 Conclusions第121-123页
Chapter 5 A compressed sensing approach for efficient ensemble learning第123-155页
    5.1 Compressed sensing ensemble第124-127页
        5.1.1 Problem formulation and solution technique第125-127页
    5.2 Roulette-wheel kappa-error diagram第127-132页
    5.3 Experimental results and discussion第132-138页
        5.3.1 Results with base learner CART and random subspace第133-135页
        5.3.2 Results with base learner C45 and Bagging第135页
        5.3.3 Roulette-wheel Kappa-error diagrams for the four different CS methods第135-137页
        5.3.4 Comparison of proposed method against five other pruning algo-rithms第137-138页
    5.4 Conclusion and future work第138-155页
Chapter 6 Joint sparse representation for ensemble learning第155-177页
    6.1 Joint sparse reconstruction for ensemble learning第156-163页
        6.1.1 Posing ensemble problems as joint sparse representation problems第159-161页
        6.1.2 Two alternative methods for obtaining the sub-underdetermined systems for a joint sparse ensemble第161-163页
    6.2 Experimental results and discussion第163-168页
        6.2.1 Performance of joint sparse ensemble第164-167页
        6.2.2 Comparison of joint sparse ensemble against other algorithms第167-168页
    6.3 Concluding remarks第168-177页
Chapter 7 Concluding remarks and future Work第177-181页
References第181-195页
Appendix A Comparison of two cases and figure results in CHAPTER 4第195-203页
    A.1 Comparison of no-better-choice with random-choice第195-199页
        A.1.1 Effect of no-better-choice and random-choice on the Same Popu-lation第195-199页
        A.1.2 Incorporate no-better-choice and random-choice into the Local Search Algorithm第199页
    A.2 Figures produced by each algorithm for the benchmark problems第199-203页
Acknowledgements第203-205页
致谢第205-207页
About the Author第207-211页
作者简介第211-213页

论文共213页,点击 下载论文
上一篇:基于价格理论的无线网络资源分配算法研究
下一篇:河南省产业集聚对农村区域经济发展影响的实证研究