摘要 | 第1-4页 |
ABSTRACT | 第4-7页 |
1 绪论 | 第7-14页 |
·多尺度方向分析理论的理论背景与发展趋势 | 第7-9页 |
·从傅立叶分析到小波分析 | 第8-9页 |
·从小波分析到超小波分析 | 第9页 |
·图像压缩与编码概述 | 第9-12页 |
·图像压缩与编码概念 | 第10页 |
·图像压缩编码的分类 | 第10-11页 |
·图像压缩编码术语简介 | 第11-12页 |
·本文的主要工作 | 第12-14页 |
2 多尺度方向分析理论 | 第14-21页 |
·BANDELET变换 | 第16-17页 |
·脊波(RIDGELET)及单尺度脊波(MONOSCALE RIDGELET)变换 | 第17-18页 |
·CURVELET变换 | 第18-19页 |
·CONTOURLET变换 | 第19-21页 |
3 Contourlet变换 | 第21-29页 |
·塔形方向滤波器组PDFB | 第21-23页 |
·CONTOURLET变换的性质 | 第23-25页 |
·非线性逼近实验比较 | 第25-27页 |
·CONTOURLET变换的应用分析 | 第27-29页 |
4 Contourlet变换域系数统计特性 | 第29-42页 |
·CONTOURLET变换域系数相互关系定义 | 第29-31页 |
·CONTOURLET变换域系数统计特征分析 | 第31-40页 |
·边缘统计分析 | 第31-35页 |
·联合统计分析 | 第35-39页 |
·统计分析小结 | 第39-40页 |
·CONTOURLET系数中的树结构 | 第40-42页 |
5 基于Contourlet变换域的EZW算法 | 第42-47页 |
·EZW图像编码原理 | 第42-45页 |
·零树表示 | 第42-44页 |
·逐次逼近的嵌入式编码 | 第44-45页 |
·基于CONTOURLET域的EZW编码实验 | 第45-47页 |
6 基于Contourlet域的SPIHT算法 | 第47-61页 |
·CONTOURLET域的SPIHT算法原理 | 第47-50页 |
·不同编码算法实验结果比较 | 第50-59页 |
·相同算法不同滤波器实验结果比较 | 第59-61页 |
结论 | 第61-63页 |
致谢 | 第63-64页 |
参考文献 | 第64-67页 |