首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--模式识别与装置论文

Research on Key Techniques of Heterogeneous Facial Expression Recognition

Abstract第6-8页
摘要第9-11页
Dedication第11-16页
LIST OF TABLES第16-17页
LIST OF FIGURES第17-20页
Chapter 1 Introduction第20-32页
    1.1 Background to Facial Expression Studies第20-23页
        1.1.1 The History of Facial Expression Studies第20-21页
        1.1.2 Modern Applications of Facial Expression Recognition第21-23页
    1.2 System Vulnerabilities第23-27页
        1.2.1 Skin and Face Detections第23-24页
        1.2.2 Normalization第24-25页
        1.2.3 Computational Complexity第25页
        1.2.4 Challenges with Databases第25-26页
        1.2.5 Misclassification第26页
        1.2.6 Expression Recognition Accuracy第26-27页
    1.3 Heterogeneous Facial Expressions第27-29页
    1.4 Project Description第29-31页
        1.4.1 Introduction第29-30页
        1.4.2 Limitations of study第30页
        1.4.3 Objectives of study第30-31页
    1.5 The Organization of Dissertation第31页
    1.6 Brief Summary第31-32页
Chapter 2 Techniques of Heterogeneous FacialExpression Recognition第32-77页
    2.1 Introduction第32页
    2.2 Facial Image Data第32-44页
        2.2.1 Facial Image Data Acquisition Methods第32-34页
        2.2.2 AUs,FAUs and FACS第34-39页
        2.2.3 Commercial Databases第39-44页
    2.3 Procedural Techniques to Heterogeneous Facial Expression Recognition第44-74页
        2.3.1 Skin Detection第44-48页
        2.3.2 Face Detection第48-49页
        2.3.3 Expression Recogniton第49-74页
            2.3.3.1 Introduction第49-51页
            2.3.3.2 Face Representation第51-52页
            2.3.3.3 Facial Feature Extraction Methods第52-61页
                2.3.3.3.1 Haar Feature Extraction第52-54页
                2.3.3.3.2 Distance-Based Extraction第54-56页
                2.3.3.3.3 Patch-Based Extraction第56-58页
                2.3.3.3.4 Gabor Feature Extraction Method第58-61页
            2.3.3.4 Feature Dimensionality Reductions第61-67页
                2.3.3.4.1 Principal Component Analysis(PCA)第62-63页
                2.3.3.4.2 Linear Discriminant Analysis(LDA)第63-66页
                2.3.3.4.3 AdaBoost Feature Reduction第66-67页
            2.3.3.5 Expression Classifiers第67-74页
                2.3.3.5.1 Classification by Hidden Markov Model(HMM)第68-69页
                2.3.3.5.2 Classification by Bayesian Network(BN)第69-70页
                2.3.3.5.3 Classification by AdaBoost第70-71页
                2.3.3.5.4 Classification by Support Vector Machine(SVM)第71-74页
    2.4 The Proposed Techniques to Facial Expression Recognitions第74-76页
    2.5 Brief Summary第76-77页
Chapter 3 Robust Pixel-Based Skin Detection第77-89页
    3.1 Introduction第77页
    3.2 The Proposed Method第77-85页
        3.2.1 Light Normalization第79-81页
        3.2.2 Converting RGB Image into HSV第81页
        3.2.3 Determining C_r, C_b from RGB第81-82页
        3.2.4 The Skin Threshold Value for C_b-C_r and H第82-84页
        3.2.5 Skin Regions Extraction第84-85页
        3.2.6 Morphological Operations第85页
    3.3 Results and Discussions第85-88页
        3.3.1 Visual Performance第85-87页
        3.3.2 Comparative Evaluation第87-88页
    3.4 Brief Summary第88-89页
Chapter 4 Face Detection by Multilayer Feed-ForwardNeural Network第89-107页
    4.1 Introduction第89-91页
    4.2 Image Acquisition and Preprocessing第91页
    4.3 Facial Features Extraction by Gabor Filters第91-94页
    4.4 Normalization and down-sampling第94-98页
        4.4.1 Two-Dimensional Discrete Cosine Transform (2D-DCT)第94-95页
        4.4.2 Application of 2D-DCT to Image Normalization第95-96页
        4.4.3 Down-sampling of image第96-98页
    4.5 Improved Face Classification by MFFNN第98-102页
    4.6 Experimental Results and Analysis第102-105页
    4.7 Brief Summary第105-107页
Chapter 5 Multi-classification Approach toHeterogeneous Facial Expression Recognition第107-133页
    5.1 Introduction第107-108页
    5.2 Facial Feature Tracking and Extraction第108-115页
        5.2.1 Facial Feature Tracking第108-113页
        5.2.2 Gabor Feature Extraction第113-115页
    5.3 Related Classification Methods第115-117页
        5.3.1 AdaBoost Multiclass Algorithm第115-117页
        5.3.2 SVM Multiclass Algorithm第117页
    5.4 Facial Expression Recognition by Ada-AdaSVM第117-121页
        5.4.1 The Principle of Ada-AdaSVM第118页
        5.4.2 Facial Expression Recognition Algorithm by Ada-AdaSVM第118-121页
    5.5 Experimental Results and Analysis第121-132页
        5.5.1 Experimental Environment第121-122页
        5.5.2 Recognition Accuracy and Comparative Analysis第122-130页
        5.5.3 Recognition Speed and Comparative Analysis第130-132页
    5.6 Brief Summary第132-133页
Chapter 6 General Conclusions and Future Work第133-139页
    6.1 General Conclusions第133-135页
    6.2 Contributions第135-138页
    6.3 Future Work第138-139页
Acknowledgment第139-140页
References第140-160页
Publications第160页

论文共160页,点击 下载论文
上一篇:中西方人脑形态学研究与大样本中国人脑模板构建
下一篇:早期胃癌血清miRNAs筛选及其表达研究