首页--数理科学和化学论文--力学论文--振动理论论文--非线性振动论文

一类非线性结构混沌运动的研究

第一章 绪论第8-12页
第二章 非线性模型举例与Melnikov方法第12-26页
    §2.1 非线性弹性梁受扰振动问题第12-14页
    §2.2 轴压弹性圆柱壳受迫振动问题第14-18页
    §2.3 受热板的非线性振动问题第18-21页
    §2.4 横向荷载作用下弹性拱的受迫振动第21-24页
    §2.5 Melnikov方法简介第24-26页
第三章 γ<0时方程的动力学行为分析第26-49页
    §3.1 异宿轨道存在的条件第27-32页
        §3.1.1 a>0且β>0的情形第27-31页
        §3.1.2 a<0的情形第31-32页
    §3.2 异宿圈和解析表达式第32-34页
        §3.2.1 a>0且β>0的情形第32-33页
        §3.2.2 a>0且β<0的情形第33页
        §3.2.3 a<0的情形第33-34页
    §3.3 异宿轨道和Melnikov函数第34-38页
        §3.3.1 a>0的情形第35-37页
        §3.2.2 a<0的情形第37-38页
    §3.4 包围中心的闭周期轨道第38-41页
        §3.4.1 a>0的情形第38-39页
        §3.4.2 a<0的情形第39-41页
    §3.5 次谐轨的Melnikov函数第41-45页
        §3.5.1 a>0的情形第41-43页
        §3.5.2 a<0的情形第43-45页
    §3.6 分叉进入马蹄的途径第45-49页
        §3.6.1 a>0时的情形第45-47页
        §3.6.2 a<0时的情形第47-49页
第四章 γ>0时方程和动力学行为分析第49-67页
    §4.1 同宿轨道存在的条件第49-55页
        §4.1.1 α>0的情形第50-51页
        §4.1.2 α<0且β>0的情形第51-54页
        §4.1.3 α<0且β<0的情形第54-55页
    §4.2 同宿轨道的Melnikov函数第55-60页
        §4.2.1 α>0的情形第55-57页
        §4.2.2 α<0的情形第57-60页
    §4.3 包围中心的闭周期轨道第60-63页
        §4.3.1 α>0的情形第60-61页
        §4.3.2 α<0的情形第61-63页
    §4.4 次谐轨的Melnikov函数第63-67页
        §4.4.1 α>0的情形第63-65页
        §4.4.2 α<0的情形第65-67页
第五章 应用举例第67-74页
全文总结第74-77页
参考文献第77-83页
致谢第83-84页
攻读学位期间发表的部分论文第84页

论文共84页,点击 下载论文
上一篇:江西吉安市历史文化村落街巷空间形态研究
下一篇:深圳福田区公园体系构建与规划策略研究