首页--工业技术论文--无线电电子学、电信技术论文--雷达论文--雷达:按体制分论文--光学定位雷达、激光雷达论文

基于多线激光雷达的道路和障碍物检测

ABSTRACT第4-5页
CHAPTER 1 INTRODUCTION第9-19页
    1.1 Overview of the Intelligent Vehicle and its Research第9-14页
        1.1.1 Intelligent Transportation Systems第9-11页
        1.1.2 Intelligent Vehicle第11-12页
        1.1.3 Competitive Driverless Car第12-14页
    1.2 Common Sensors and Technologies第14-17页
    1.3 Mainly Studies, Work and Organization of Research第17页
    1.4 Specific Research Contents第17-18页
    1.5 Research Arrangements第18-19页
CHAPTER 2 MULTIDIMENSIONAL LASER RADAR第19-33页
    2.1 Introduction第19页
    2.2 General Familiarity with Laser第19-27页
        2.2.1 System of Standard Individual Components第21-22页
        2.2.2 Ranging Principle of IBEO LUX第22-27页
    2.3 Establishment and Transformation between the Coordinate Systems第27-31页
        2.3.1 Three-dimensional Coordinate System, Geometric Transformations第27-30页
        2.3.2 Establish and Coordinate Transformation第30-31页
    2.4 Summary of Chapter 2第31-33页
CHAPTER 3 EXPERIMENTAL PLATFORM AND VEHICLE TEST第33-43页
    3.1 Test Platform Overview第33-36页
    3.2 Software System第36-37页
        3.2.1 MATLAB第36-37页
    3.3 Scan and Data Receiving第37-41页
        3.3.1 Analysis of the Scan Data第37-38页
        3.3.2 Segmenting the Scan Data第38-41页
    3.4 Summary of Chapter 3第41-43页
CHAPTER 4 ROAD AND OBJECT DETECTION BASED ON MULTI-LAYERLASER RADAR第43-65页
    4.1 Introduction第43-44页
    4.2 Hough Transform Method第44-49页
        4.2.1 Implementation of the Hough Transform第44-46页
        4.2.2 The General Algorithm of Hough Method第46-49页
    4.3 Theil–Sen Estimator第49-53页
        4.3.1 Definition第49页
        4.3.2 Statistical Properties and Implementation第49-53页
    4.4 The Method of Least Squares第53-58页
        4.4.1 The Geometry of Ordinary Least Squares第54-56页
        4.4.2 The least-squares Method with the Introduction of the Polynomial第56-58页
        4.4.3 Advantages and Disadvantages of Least Squares Method第58页
    4.5 Bounding Box第58-59页
    4.6 The Partitioning of Data into Clusters Using the Clustering Method第59-62页
        4.6.1 K-means Algorithm第59-60页
        4.6.2 Standard Algorithm第60-61页
        4.6.3 Example of Standard Algorithm第61-62页
        4.6.4 Problem of the K-means Method第62页
    4.7 Summary of Chapter 4第62-65页
CHAPTER 5 EXPERIMENTAL RESULTS AND ANALYSIS第65-89页
    5.1 Introduction第65页
    5.2 Object Detection with Hough Line Detection第65-72页
    5.3 Object Detection with Theil–Sen Estimator第72-75页
    5.4 Least Squares Method第75-80页
    5.5 Bounding Box第80-82页
    5.6 K-means Clustering第82-85页
        5.6.1 Specify the Number of Clusters第83-85页
    5.7 Comparison of Objects Detection Methods第85-88页
    5.8 Summary of Chapter 5第88-89页
CONCLUSION AND OUTLOOK第89-91页
    1. Conclusion第89-90页
    2. Outlook第90-91页
REFERENCES第91-95页
Published Papers during the Academic of Master Degree第95-97页
Acknowledgements第97页

论文共97页,点击 下载论文
上一篇:CVD石墨烯的鼓泡法转移及其上CLD氧化铝的可行性研究
下一篇:“网约车”事前许可条件设定法律研究