首页--数理科学和化学论文--数学论文--数学分析论文--微分方程、积分方程论文

具阻尼项的随机三维Navier-Stokes方程的适定性和动力学

摘要第8-10页
Abstract第10-11页
Chapter 1 Introduction第12-19页
    1.1 Backgrounds第12-17页
    1.2 Useful inequalities第17-19页
Chapter 2 Stochastic 3D Navier-Stokes equations with damping: martin-gale solution, strong solution and small time large deviation principles第19-48页
    2.1 Preliminaries第19-23页
    2.2 Existence of martingale solutions第23-26页
    2.3 Existence and uniqueness of strong solution第26-32页
        2.3.1 Uniqueness of strong solution第30-32页
    2.4 Small time large deviation principles第32-48页
Chapter 3 Ergodicity and dynamics for the stochastic 3D Navier-Stokesequations with damping第48-100页
    3.1 Preliminaries第48-50页
    3.2 Well-posedness第50-66页
    3.3 Ergodicity第66-82页
        3.3.1 Existence of invariant measures第67-71页
        3.3.2 Ergodicity第71-72页
        3.3.3 Asymptotically strong Feller property第72-78页
        3.3.4 A support property of invariant measures第78-82页
    3.4 Random attractor第82-86页
    3.5 Large deviations第86-100页
        3.5.1 Preliminaries第86-91页
        3.5.2 Large deviations第91-100页
Chapter 4 Well-posedness and invariant measures for a class of stochastic3 D Navier-Stokes equations with damping driven by jump noise第100-138页
    4.1 Preliminaries第101-105页
    4.2 A class of stochastic 3D Navier-Stokes equation with damping第105-126页
    4.3 Example第126-132页
    4.4 Invariant measures第132-138页
        4.4.1 Uniqueness of invariant measures第136-138页
Bibliography第138-148页
Publications and Finished Papers第148-149页
Acknowledgements第149页

论文共149页,点击 下载论文
上一篇:Amenable群作用动力系统的熵与大偏差
下一篇:移动平面法的积分形式对一类非线性偏微分方程(组)的应用