摘要 | 第1-5页 |
Abstract | 第5-10页 |
第一章 引言 | 第10-17页 |
§1.1 无穷维动力系统的基本理论 | 第10-12页 |
§1.2 主要结论 | 第12-17页 |
第二章 带非线性边界条件的Kirchhoff方程的全局吸引子 | 第17-52页 |
·系统(2.I)的全局吸引子 | 第19-40页 |
·系统(2.II)的全局吸引子 | 第40-52页 |
第三章 带记忆边界条件的Kirchhoff方程的全局吸引子 | 第52-67页 |
·引言 | 第52-56页 |
·定理3.1.5的证明 | 第56-64页 |
·定理3.1.6的证明 | 第64-67页 |
第四章 带非线性耗散和记忆边界条件的Kirchhoff方程的全局吸引子 | 第67-94页 |
·系统(4.I)的全局吸引子 | 第67-80页 |
·系统(4.II)的全局吸引子 | 第80-94页 |
第五章 带非线性边界条件的Schr(o|¨)dinger方程的全局吸引子 | 第94-108页 |
·引言 | 第94页 |
·解的存在唯一性和吸收集 | 第94-96页 |
·算子半群分解和高频部分先验估计 | 第96-105页 |
·全局吸引子的存在性及其正则性 | 第105-108页 |
第六章 R~1上Benjamin-Bona-Mahony方程的全局吸引子 | 第108-114页 |
·引言 | 第108页 |
·准备工作 | 第108-109页 |
·全局吸引子的存在性 | 第109-114页 |
全文主要结论和创新点 | 第114-118页 |
参考文献 | 第118-126页 |
攻读博士学位期间的工作目录 | 第126-128页 |
致谢 | 第128页 |