首页--数理科学和化学论文--运筹学论文--对策论(博弈论)论文

若干博弈问题理论模型的分数阶推广

摘要第4-5页
Abstract第5-6页
第1章 绪论第9-16页
    1.1 研究意义第9-10页
    1.2 海盗分金问题的国内外研究现状第10页
    1.3 产量竞争模型的国内外研究现状第10-13页
    1.4 分数阶差分方程研究现状第13-14页
    1.5 本文的结构安排第14-16页
第2章 基于差分方程模型的海盗分金问题研究第16-23页
    2.1 博弈论的基本理论第16-17页
    2.2 数列递推法第17-18页
    2.3 一阶差分模型第18-19页
    2.4 二阶时滞差分模型第19-22页
    2.5 本章小结第22-23页
第3章 海盗分金问题的分数阶模型理论推广第23-38页
    3.1 分数阶差分方程理论的基本定义与性质第23-27页
        3.1.1 Riemann-Liouville型分数阶差分及其性质第24-25页
        3.1.2 Caputo型分数阶差分及其性质第25-27页
    3.2 海盗分金问题的分数阶理论推广第27-37页
        3.2.1 分数阶差分模型第28页
        3.2.2 Cauchy初值问题(3-2)和(3-3)解的存在唯一性第28-35页
        3.2.3 解对初值的依赖性第35-37页
    3.3 本章小结第37-38页
第4章 分数阶产量竞争模型及控制第38-44页
    4.1 混沌基本理论分析第38-39页
    4.2 模型建立第39-40页
    4.3 数值模拟及结果分析第40-42页
    4.4 系统的混沌控制第42-43页
    4.5 本章小结第43-44页
第5章 总结与展望第44-47页
    5.1 论文总结第44-46页
    5.2 研究展望第46-47页
致谢第47-48页
参考文献第48-52页
攻读硕士学位期间的研究成果第52页

论文共52页,点击 下载论文
上一篇:基于信息熵的大气PM2.5浓度的不确定性研究
下一篇:二维连续随机变量概率密度估计