首页--数理科学和化学论文--力学论文--流体力学论文

格子玻尔兹曼浸没边界法在动边界容器颗粒沉降中的应用

摘要第5-6页
Abstract第6页
1 Introduction第26-36页
    1.1 Background第26-35页
    1.2 Objectives第35-36页
2 Numerical Methods第36-90页
    2.1 Lattice Boltzmann Method第36-40页
        2.1.1 Evolution of Lattice Boltzmann Method第36-37页
        2.1.2 Distribution Functions第37-38页
        2.1.3 Velocity Space第38页
        2.1.4 Boltzmann Equation第38-39页
        2.1.5 BGK Collision Operator第39-40页
    2.2 Discrete Boltzmann equation from the Boltzmann equation第40-49页
        2.2.1 The equilibrium distribution function for D3Q19 lattice model第46-49页
    2.3 Lattice-Boltzmann equation from the Boltzmann equation第49-54页
        2.3.1 Approximate Maxwell-Boltzmann Distribution Function第50-52页
        2.3.2 Equilibrium distribution for D2Q9 Lattice Model第52-54页
    2.4 Details on the Lattice Boltzmann method第54-70页
        2.4.1 Chapman-Enskog expansion第56-67页
        2.4.2 Computational Sequence第67-68页
        2.4.3 Inclusion of external forces to the LBM第68-70页
    2.5 Incompressible assumption第70-72页
    2.6 Conversion of units between physical and Lattice quantities第72-74页
    2.7 Parametrization of force第74-75页
    2.8 The Bounce-Back Boundary condition第75-78页
    2.9 Interaction between Solid-Fluid Boundary第78-79页
    2.10 Immersed Boundary Method第79-85页
        2.10.1 Coupling of Fluid and Immersed Object第81-83页
        2.10.2 Hydrodynamics Interaction Force第83-85页
    2.11 Particle Equation of Motion第85-90页
        2.11.1 Hard Sphere Molecular Dynamics (HSMD) Modeling第87-88页
        2.11.2 Lubrication Forces第88页
        2.11.3 Hard sphere kinematics第88-90页
3 Particle Sedimentation Using Hybrid LBM-IBM Scheme第90-110页
    3.1 Introduction第90-92页
    3.2 Summary of the Lattice-Boltzmann Method第92-94页
    3.3 Immersed Boundary Method and the Hydrodynamics Interaction Force第94-97页
        3.3.1 Particle Hydrodynamic Force第94-95页
        3.3.2 Force Density from the Cuboid Walls第95页
        3.3.3 Solid-Fluid Interaction Force Modification第95-96页
        3.3.4 Slip Velocity第96页
        3.3.5 Porosity第96-97页
    3.4 Numerical results and discussions第97-109页
        3.4.1 Numerical Set Up of a Single Particle Sedimentation in a Cavity第97-101页
            3.4.1.1 Particle Velocity and Trajectory第98-99页
            3.4.1.2 Flow field and wake structure第99-101页
        3.4.2 Sedimentation of 7200 Spherical Particles in a Newtonian Fluid第101-109页
    3.5 Chapter Summary第109-110页
4 Transverse Harmonic Oscillation of Container Walls and the Influence on Particle-Laden Newtonian Fluid: an LBM-IBM Approach第110-152页
    4.1 Introduction第110-113页
    4.2 Problem Formulation and Numerical Model第113-115页
        4.2.1 Forced Vibration of a Clamped Lamina第114-115页
        4.2.2 Fluid-Lamina Interaction Model第115页
    4.3 Simulation Method第115-124页
        4.3.1 Boundary Condition and Force Density on a Stationary Wall第117-119页
        4.3.2 Boundary Condition and Force Density on an Oscillating Wall第119-120页
        4.3.3 Point-Particle Immersed Boundary Model第120-122页
            4.3.3.1 Particle Hydrodynamic Force第121页
            4.3.3.2 Wall Hydrodynamic Force第121-122页
        4.3.4 The Finite Wall Model第122-123页
            4.3.4.1 Contact Detection第122页
            4.3.4.2 Contact Resolution第122-123页
        4.3.5 Particle Model and Kinematics第123页
        4.3.6 Model Error Comparison第123-124页
    4.4 Configuration and Parameter Setup第124-131页
        4.4.1 Flow Through a Channel第124-126页
        4.4.2 Stationary Fluid in an Oscillating Cube第126-127页
        4.4.3 Single and Multiparticle Settling in a Rectangular Box第127-131页
    4.5 Numerical Results and Discussions第131-150页
        4.5.1 Flow Through Stationary Channel Walls第131-132页
        4.5.2 Grid Convergence Study第132-133页
        4.5.3 An External Force Governed FSI第133-140页
            4.5.3.1 Flow Dynamics in an Oscillatory Wall第134-137页
            4.5.3.2 Structure of the Velocity Field第137-138页
            4.5.3.3 Effect of Force Oscillation Frequency第138-140页
        4.5.4 Single Particle Sedimentation in a Cubic Box第140-141页
        4.5.5 Multiparticle Sedimentation第141-144页
            4.5.5.1 Particle Dynamics in a Stationary Wall第142-143页
            4.5.5.2 Particle Dynamics within an Oscillating Boundary第143-144页
        4.5.6 Particles Flow Parameters第144-150页
            4.5.6.1 Settling Velocity第144-148页
            4.5.6.2 Velocity fluctuations第148-149页
            4.5.6.3 Averaged flow properties第149-150页
    4.6 Chapter Summary第150-152页
5 Influence of Wall Motion on Particle Sedimentation Using Hybrid LB-IBM Scheme第152-183页
    5.1 Introduction第152-154页
    5.2 Motivation第154-155页
    5.3 Immersed Boundary Model第155-157页
    5.4 Model and Parameter Setup of an Oscillating Rectangular Container第157-159页
    5.5 Numerical results and discussions第159-181页
        5.5.1 Effect of Side Walls Horizontal Motion第159-161页
        5.5.2 Effect of Horizontal Walls Vertical Oscillatory Motion第161-163页
        5.5.3 Sinusoidal oscillations of a rectangular box filled with spherical particles第163-164页
        5.5.4 Effects of wall Motion on Many Particle Sedimentation第164页
        5.5.5 Distribution of Particles Concentration第164-181页
            5.5.5.1 Settling Velocity第168-169页
            5.5.5.2 Velocity fluctuations第169-178页
            5.5.5.3 Temporal structure of the dispersed phase第178-181页
    5.6 Chapter Summary第181-183页
6 Conclusions and Future Outlook第183-190页
    6.1 Conclusion第183-186页
        6.1.1 Conclusion for Chapter 3第183页
        6.1.2 Conclusion for Chapter 4第183-185页
        6.1.3 Conclusion for Chapter 5第185-186页
    6.2 Innovation第186-187页
    6.3 Outlook第187-190页
References第190-206页
Appendix第206-208页
Publications第208-210页
Acknowledgement第210页

论文共210页,点击 下载论文
上一篇:湍流边界层中颗粒流体释放的标度律研究
下一篇:一致性高阶无单元伽辽金法及裂纹扩展分析