首页--数理科学和化学论文--数学论文--几何、拓扑论文--拓扑(形势几何学)论文--一般拓扑论文--拓扑空间(空间拓扑)论文

Some Aspects of Geometry and Analysis in Sub-Riemannian Manifolds

1 Preface: Background第8-14页
2 Basic Material on Sub-Riemannian Manifolds第14-22页
    2.1 Sub-Riemannian Manifolds第14-17页
    2.2 Examples第17-22页
        2.2.1 Contact Manifolds第17页
        2.2.2 Carnot Groups第17-22页
3 Geometry of Generalized Heisenberg Groups第22-37页
    3.1 Properties of Sub-Riemannian Geodesics第23-30页
    3.2 The Sub-Riemannian Isometry Groups第30-35页
    3.3 The Jacobian of Changing Variables Along Geodesics第35-37页
4 Horizontal Connection and Mean Curvatures第37-58页
    4.1 Introduction第37-41页
    4.2 Horizontal Tangent Bundle and Connectivity第41-48页
    4.3 Horizontal Connection and the Horizontal Mean Curvature第48-58页
5 Sobolev Classes between CC Spaces第58-76页
    5.1 Sobolev Functions Defined on CC Spaces第59-61页
    5.2 Sobolev Classes from CC Spaces to Separable Metric Spaces第61-76页
        5.2.1 Equivalence of Sobolev Classes第61-66页
        5.2.2 Basic Properties of Sobolev Mappings between CC Spaces第66-76页
6 Energy Minimizers from CC Spaces第76-114页
    6.1 Introduction第76-81页
    6.2 The Choice of Energy Functionals第81-87页
        6.2.1 The Energy Functional of Korevaar-Schoen第81-84页
        6.2.2 Our Energy Functional第84-87页
    6.3 Precompactness and Trace Theorems for Sobolev Mappings第87-92页
    6.4 Existence of Energy Minimizers in the General Case第92-94页
    6.5 Regularity of Energy Minimizers into NPC Spaces第94-103页
        6.5.1 Generalized Dirichlet Forms第94-98页
        6.5.2 Spaces of Nonpositive Curvature in the Sense of Alexandrov第98-99页
        6.5.3 Removing the Noncharacteristic Condition and Uniqueness of Minimizer第99-101页
        6.5.4 Holder Continuity of Energy Minimizer第101-103页
    6.6 Regularity of Minimizers: the Heisenberg Group Target第103-114页

论文共114页,点击 下载论文
上一篇:《美国1965年中小学教育法》翻译报告
下一篇:刑事诉讼领域电子证据取证问题研究