| 中文摘要 | 第1-6页 |
| Abstract | 第6-10页 |
| Chapter 1 Introduction | 第10-22页 |
| ·Basic Hypergeometric Series | 第10-13页 |
| ·Bilateral Basic Hypergeometric Series | 第13-14页 |
| ·Elliptic and Theta Hypergeometric Series | 第14-17页 |
| ·Classical q-Series Identities | 第17-22页 |
| Chapter 2 Expansion Formulas for q-Series | 第22-40页 |
| ·Newton and Lagrange Interpolation Formulas | 第22-27页 |
| ·The q-Taylor Formula | 第27-32页 |
| ·Liu's q-Expansion Formula | 第32-35页 |
| ·Chu's Two q-Expansion Formulas | 第35-36页 |
| ·A Newton Type Rational Interpolation Formula | 第36-40页 |
| Chapter 3 A 2n-Point Interpolation Formula with Its Applications | 第40-50页 |
| ·The 2n-Point Interpolation Formula | 第40-45页 |
| ·q-Identities from the 2n-Point Interpolation Formula | 第45-47页 |
| ·q-Identities from the 2n-Point Interpolation Formula for f(y)=1 | 第47-50页 |
| Chapter 4 A 4n-Point Interpolation Formula and Its Elliptic Analogue | 第50-62页 |
| ·A New Derivative Operator | 第50-52页 |
| ·The 4n-Point Interpolation Formula | 第52-55页 |
| ·Elliptic Analogue of the 4n-Point Interpolation Formula | 第55-57页 |
| ·q-Identities from the 4n-Point Elliptic Interpolation Formula | 第57-62页 |
| Chapter 5 The Algorithm Z and Ramanujan's 1Ψ1 Summation | 第62-78页 |
| ·Integer Partition and Generating Function | 第62-66页 |
| ·The Algorithm Z | 第66-69页 |
| ·A Variation of the Algorithm Z | 第69-71页 |
| ·A Combinatorial Proof of Ramanujan's 1Ψ1(a;b;q,z) | 第71-78页 |
| References | 第78-84页 |
| 致谢 | 第84-86页 |
| 个人简历 | 第86页 |