智能视频监控中目标检测跟踪技术的研究
摘要 | 第1-6页 |
ABSTRACT | 第6-8页 |
目录 | 第8-11页 |
第一章 绪论 | 第11-20页 |
·课题的研究背景、现状及意义 | 第11-16页 |
·课题研究背景 | 第11-12页 |
·国内外研究现状 | 第12-15页 |
·课题研究的意义 | 第15-16页 |
·本文的主要研究内容 | 第16-18页 |
·研究内容介绍 | 第16-17页 |
·实现技术介绍 | 第17-18页 |
·论文的组织结构 | 第18-20页 |
第二章 数字图像的预处理与后处理 | 第20-28页 |
·图像滤波技术 | 第20-23页 |
·空间滤波与非周期噪声处理 | 第20-22页 |
·频率域滤波与周期噪声处理 | 第22-23页 |
·彩色模型 | 第23-25页 |
·RGB彩色模型 | 第23-24页 |
·YUV彩色模型 | 第24页 |
·彩色模型转换 | 第24-25页 |
·形态学图像处理 | 第25-27页 |
·腐蚀与膨胀 | 第25-26页 |
·开运算与闭运算 | 第26-27页 |
·本章小结 | 第27-28页 |
第三章 运动目标检测技术 | 第28-46页 |
·运动目标检测方法 | 第28-33页 |
·背景减除法 | 第28-30页 |
·帧间差分法 | 第30-31页 |
·光流法 | 第31-32页 |
·运动目标检测方法的比较 | 第32-33页 |
·混合高斯模型 | 第33-36页 |
·高斯模型 | 第33-34页 |
·模型的建立 | 第34-35页 |
·参数更新 | 第35-36页 |
·阴影抑制技术 | 第36-41页 |
·基于YUV彩色模型的阴影模型 | 第36-37页 |
·混合高斯阴影模型 | 第37-39页 |
·混合高斯模型的快速算法 | 第39-41页 |
·实验结果与分析 | 第41-44页 |
·本章小结 | 第44-46页 |
第四章 目标跟踪技术 | 第46-67页 |
·目标特征 | 第46-47页 |
·目标跟踪方法 | 第47-49页 |
·基于滤波理论的目标跟踪方法 | 第47-48页 |
·基于偏微分方程的目标跟踪方法 | 第48-49页 |
·基于均值平移算法的目标跟踪方法 | 第49页 |
·Mean Shift算法原理 | 第49-55页 |
·Mean Shift算法的迭代 | 第49-51页 |
·Mean Shift算法的目标跟踪 | 第51-53页 |
·Mean Shift算法性能分析 | 第53-55页 |
·尺度不变特征转换算法 | 第55-62页 |
·SIFT算法流程 | 第55-62页 |
·SIFT算法的特点分析 | 第62页 |
·结合SIFT算法的Mean Shift融合算法 | 第62-64页 |
·实验结果与分析 | 第64-66页 |
·本章小结 | 第66-67页 |
第五章 智能视频监控系统 | 第67-82页 |
·智能视频监控系统简介 | 第67页 |
·智能视频监控系统总体架构 | 第67-69页 |
·子系统实验结果与分析 | 第69-81页 |
·行人移动侦测与跟踪子系统 | 第71-73页 |
·绊线检测与周界防范子系统 | 第73-78页 |
·盗移检测子系统 | 第78-81页 |
·本章小结 | 第81-82页 |
第六章 总结与展望 | 第82-84页 |
·本文工作总结 | 第82-83页 |
·未来工作展望 | 第83-84页 |
参考文献 | 第84-88页 |
致谢 | 第88-89页 |
攻读学位期间发表的学术论文目录 | 第89页 |