首页--工业技术论文--石油、天然气工业论文--油气田开发与开采论文--气田开发与开采论文--气田提高采收率方法论文

Vertical Extension of Hydraulic Fracture of the Bedding Shale Formation

ABSTRACT第3-4页
Chapter 1 Introduction第8-13页
    1.1 Research Background第8-11页
    1.2 Problem statement第11-12页
    1.3 Research Objectives第12-13页
        1.3.1 Main objective第12页
        1.3.2 Specific Objectives第12-13页
Chapter 2 Literature Review第13-22页
    2.1 Hydraulic fracturing第13页
    2.2 Fracture mechanisms第13-14页
    2.3 Fracture orientations第14-15页
    2.4 Classification of fracture from simple to complex第15页
    2.5 Factors influencing fracture propagation geometry第15-22页
        2.5.1 In-situ stress and Natural fracture orientations第16-18页
        2.5.2 Rock toughness第18页
        2.5.3 Pressure第18-21页
        2.5.4 Pump displacement and fluid viscosity第21-22页
Chapter 3 Methodology第22-36页
    3.1 Experimental Design第22-23页
    3.2 Laboratory setup and Specimen preparation第23-25页
    3.3 Selection of fracturing Fluid viscosity and flow rate第25-26页
    3.4 Experimental Procedures第26-27页
    3.5 Experimental Results and Analysis第27-36页
        3.5.1 Influence of differential Stress第29-31页
        3.5.2 The influence of Fluid viscosity第31-32页
        3.5.3 The influence of Flow rate第32-34页
        3.5.4 The influence of bedding plane第34-36页
Chapter 4 Finite Element Modeling第36-62页
    4.1 Finite Element Method第36-39页
    4.2 Modeling software第39页
    4.3 Module used第39-40页
    4.4 Methodology for performing FEM第40-50页
        4.4.1 Geometry第41-43页
        4.4.2 Material Properties第43-44页
        4.4.3 Boundary conditions第44-46页
        4.4.4 Meshing第46-47页
        4.4.5 The solver第47-48页
        4.4.6 Postprocessing第48-49页
        4.4.7 Governing Equations第49-50页
    4.5 Modeling Results and Discussion第50-62页
        4.5.1 One layer block model without pore pressure第50-52页
        4.5.2 One layer block model system with pore pressure第52-54页
        4.5.3 Five-layer block model system without pore pressure第54-59页
        4.5.4 Five-layer block model system with pore pressure第59-62页
Chapter 5 Modeling of Vertical Extension of Hydraulic Fracture第62-76页
    5.1 Finite element Fracture propagation theory (AbaQus)第62-65页
        5.1.1 Cohesive damage initiation criterion第63页
        5.1.2 Cohesive damage growth criterion第63-64页
        5.1.3 Fluid flow in the fracture第64-65页
    5.2 Modeling the Multilayered shale of different thickness and material properties第65-66页
        5.2.1 Model parameter第65-66页
    5.3 Modelling results for vertical fracture extension第66-73页
        5.3.1 Influence of minimum horizontal stress difference第68-70页
        5.3.2 Influence of flow rate on fracture propagation第70-71页
        5.3.3 Influence of young modulus on fracture propagation第71-73页
    5.4 Field simulation analysis第73-76页
Chapter 6 Conclusion and Recommendations第76-78页
    6.1 Conclusion第76-77页
    6.2 Recommendation第77-78页
REFERENCES第78-82页
APPENDIX第82-83页
ACKNOWLEDGMENT第83页

论文共83页,点击 下载论文
上一篇:番茄的遗传多样性与杂种优势预测及强优势组合选育
下一篇:苦参功能基因RPS13s和HSP17.8的克隆、表达以及蛋白功能初步分析