首页--工业技术论文--建筑科学论文--建筑结构论文--金属结构论文--组合结构论文

The Behavior and Performance of Self-insulating Reinforced Concrete Masonry Shear Walls under In-plane Loading

ACKNOWLEDGEMENTS第5-6页
摘要第6-8页
ABSTRACT第8-9页
CHAPTER 1 Introduction第20-24页
    1.1 Introduction第20页
    1.2 Background第20-22页
    1.3 Research objectives第22页
    1.4 Structure of this thesis第22-24页
CHAPTER 2 Literature Review第24-45页
    2.1 Introduction第24页
    2.2 Failure modes of masonry shear walls第24-27页
        2.2.1 Flexural failure mechanism:第24-26页
        2.2.2 Shear failure mechanism:第26-27页
    2.3 Resistance mechanism of masonry shear walls第27-37页
        2.3.1 Flexural resistance第27-29页
        2.3.2 Shear resistance第29-37页
    2.4 Ductility第37-38页
    2.5 Previous researches第38-44页
    2.6 Summary第44-45页
CHAPTER 3 Experimental and Numerical Analysis of the Compressive and Shear Behavior for A New Typeof Self-Insulating Concrete Masonry System第45-61页
    3.1 Introduction第45页
    3.2 Experimental program第45-52页
        3.2.1 Materials第45-47页
        3.2.2 Compressive strength test第47-49页
        3.2.3 Shear strength test第49-52页
    3.3 Finite element modeling第52-60页
        3.3.1 Constitutive models第53-55页
        3.3.2 FE model, results and discussion第55-60页
    3.4 Summary第60-61页
CHAPTER 4 Self-Insulating Concrete Masonry Shear Walls Experimental Program第61-74页
    4.1 Introduction第61页
    4.2 Footing description第61-62页
    4.3 Wall specimen description第62-64页
    4.4 Load beam description第64页
    4.5 Mid beam description第64-65页
    4.6 Wall material properties第65页
    4.7 Tensile testing of reinforcement第65-66页
    4.8 Construction of wall specimens第66-69页
    4.9 Test setup第69-70页
    4.10 Instrumentation第70-71页
    4.11 Wall strength prediction第71-72页
    4.12 System control&data acquisition第72页
    4.13 Test procedures第72-73页
    4.14 Summary第73-74页
CHAPTER 5 Results of Self-Insulating Concrete Masonry Shear Wall Tests第74-107页
    5.1 Introduction第74页
    5.2 Specimen SW1第74-84页
        5.2.1 Test observation第74-76页
        5.2.2 Load-displacement第76-77页
        5.2.3 Displacement and drift components第77-78页
        5.2.4 Walls curvatures第78-79页
        5.2.5 Displacement and curvature ductility第79-81页
        5.2.6 Plastic hinge length第81-82页
        5.2.7 Energy dissipation第82-83页
        5.2.8 Equivalent hysteretic damping第83-84页
    5.3 Specimen SW2第84-89页
        5.3.1 Test observation第85-86页
        5.3.2 Load-displacement第86-87页
        5.3.3 Displacement and drift components第87页
        5.3.4 Wall curvatures第87-88页
        5.3.5 Displacement and curvature ductility第88页
        5.3.6 Plastic hinge length第88-89页
        5.3.7 Energy dissipation:第89页
        5.3.8 Equivalent hysteretic damping:第89页
    5.4 Specimen SW3第89-93页
        5.4.1 Test observation第89-90页
        5.4.2 Load-displacement第90-91页
        5.4.3 Displacement and drift components第91页
        5.4.4 Wall curvatures第91-92页
        5.4.5 Displacement and curvature ductility第92-93页
        5.4.6 Plastic hinge length第93页
        5.4.7 Energy dissipation第93页
        5.4.8 Equivalent hysteretic damping第93页
    5.5 Specimen SW4第93-97页
        5.5.1 Test observation第94-95页
        5.5.2 Load-displacement第95页
        5.5.3 Displacement and drift components:第95-96页
        5.5.4 Wall curvatures第96页
        5.5.5 Displacement and curvature ductility第96-97页
        5.5.6 Plastic hinge length第97页
        5.5.7 Energy dissipation第97页
        5.5.8 Equivalent hysteretic damping第97页
    5.6 Specimen SW5第97-101页
        5.6.1 Test observation第98页
        5.6.2 Load-displacement第98-99页
        5.6.3 Displacement and drift components第99页
        5.6.4 Wall curvatures第99-100页
        5.6.5 Displacement and curvature ductility第100-101页
        5.6.6 Plastic hinge length第101页
        5.6.7 Energy dissipation第101页
        5.6.8 Equivalent hysteretic damping第101页
    5.7 Specimen SW6第101-106页
        5.7.1 Test observation第102-103页
        5.7.2 Load-displacement第103-104页
        5.7.3 Displacement and drift components第104页
        5.7.4 Wall curvatures第104-105页
        5.7.5 Displacement and curvature ductility第105页
        5.7.6 Plastic hinge length第105-106页
        5.7.7 Energy dissipation第106页
        5.7.8 Equivalent hysteretic damping:第106页
    5.8 Summary第106-107页
CHAPTER 6 Analysis and Comparisons of Self-Insulating Concrete Masonry Shear Walls Performance第107-119页
    6.1 Introduction第107页
    6.2 Theoretical predictions第107页
    6.3 Lateral drifts第107-109页
    6.4 Displacement ductility第109页
    6.5 Plastic hinge length第109-110页
    6.6 Energy dissipation第110页
    6.7 Equivalent hysteretic damping第110-111页
    6.8 Effect of design parameters on seismic behavior of SCMSW specimens第111-113页
        6.8.1 Effect of aspect ratio on hysteretic response of SCMSW specimens第111-112页
        6.8.2 Effect of vertical reinforcement ratio on hysteretic response of SCMSW specimens第112-113页
        6.8.3 Effect of axial load ratio on hysteretic response of SCMSW specimens第113页
    6.9 Finite element analysis第113-116页
        6.9.1 Material constitutive models第113-114页
        6.9.2 Finite element analysis model第114-115页
        6.9.3 Finite element simulation results and analysis第115-116页
    6.10 Design example第116-118页
    6.11 Summary第118-119页
CHAPTER 7 Conclusions and Future Research第119-122页
    7.1 Introduction第119页
    7.2 Experimental and numerical analysis of the compressive and shear behavior for a newtype of self-insulating concrete masonry system第119-120页
    7.3 Experimental studies on behavior of a new type of self-insulating concrete masonryshear walls under in-plane cyclic loading第120-121页
    7.4 The innovative points of this thesis第121页
    7.5 Future research第121-122页
References第122-129页
APPENDICES第129-132页
Author's Papers Published During the Ph.D第132页

论文共132页,点击 下载论文
上一篇:冷成型不锈钢结构受力性能的关键问题研究
下一篇:基于微生物矿化的自修复水泥基材料性能及微观结构