摘要 | 第1-4页 |
Abstract | 第4-6页 |
目录 | 第6-8页 |
第一章 绪论 | 第8-13页 |
·研究目的与意义 | 第8-9页 |
·研究现状 | 第9-11页 |
·文章主要内容与结构 | 第11-13页 |
第二章 统计学习理论与支持向量机 | 第13-26页 |
·统计学习理论 | 第13-18页 |
·机器学习的讨论 | 第13-14页 |
·经验风险最小化 | 第14-15页 |
·VC维 | 第15页 |
·推广性的界 | 第15-16页 |
·结构风险最小化 | 第16-18页 |
·支持向量机 | 第18-25页 |
·最优分类面 | 第18-21页 |
·支持向量机 | 第21-23页 |
·支持向量回归 | 第23-25页 |
·小结 | 第25-26页 |
第三章 基于支持向量值轮廓波变换的遥感图像分辨率增强算法 | 第26-40页 |
·支持向量值滤波器 | 第26-27页 |
·非抽样方向滤波器组 | 第27-29页 |
·支持向量值轮廓波变换 | 第29-30页 |
·基于支持向量值轮廓波变换的遥感图像分辨率增强 | 第30-39页 |
·遥感图像分辨率增强评价指标 | 第31-32页 |
·分辨率增强算法步骤 | 第32-34页 |
·实验结果与分析 | 第34-39页 |
·小结 | 第39-40页 |
第四章 基于支持向量回归和Curvelet变换的单幅遥感图像分辨率增强算法 | 第40-50页 |
·Curvelet变换理论 | 第40-45页 |
·Ridgelet变换 | 第41-42页 |
·第一代Curvelet变换 | 第42-43页 |
·连续Curvelet变换 | 第43-44页 |
·离散Curvelet变换 | 第44-45页 |
·单帧分辨率增强算法过程及步骤 | 第45-46页 |
·实验及分析 | 第46-49页 |
·小结 | 第49-50页 |
第五章 基于小波支持向量回归的遥感多光谱图像分辨率增强算法 | 第50-67页 |
·多分辨率分析 | 第50-54页 |
·小波变换 | 第51-52页 |
·非抽样Contourlet变换 | 第52-54页 |
·核函数 | 第54-56页 |
·小波核函数 | 第56-59页 |
·全色与多光谱图像 | 第59页 |
·分辨率增强算法步骤 | 第59-60页 |
·实验及分析 | 第60-66页 |
·小结 | 第66-67页 |
第六章 总结与展望 | 第67-69页 |
·全文工作总结 | 第67页 |
·今后工作展望 | 第67-69页 |
参考文献 | 第69-73页 |
致谢 | 第73-74页 |
论文发表与项目参与 | 第74页 |