首页--工业技术论文--电工技术论文--发电、发电厂论文--各种发电论文--太阳能发电论文

雾霾天气条件下光伏电站功率预测及其应用研究

ACKNOWLEDGEMENT第5-6页
ABSTRACT第6页
CHAPTER 1 Introduction第10-23页
    1.1 PV power schemes第12-14页
        1.1.1 Off-grid PV scheme第12-13页
        1.1.2 Grid-connected PV Schemes第13-14页
    1.2 Global PV power industry第14-16页
    1.3 PV power variations第16-18页
    1.4 Motivation of thesis第18-19页
    1.5 Objectives of thesis第19-20页
    1.6 Frame work of Thesis第20-21页
    1.7 Outline of Thesis第21-23页
CHAPTER 2 Solar radiation measurement and PV power forecasting methods第23-53页
    2.1 Solar Radiation Elements at the Earth Level第23-25页
    2.2 Solar Radiation measurements第25-29页
        2.2.1 Satellite Based Models for measuring Radiation第25-28页
        2.2.2 Online Databases for radiation measurement第28-29页
    2.3 PV power plant scheme installation第29-30页
    2.4 Global horizontal and clear sky radiation第30-32页
    2.5 Cloud Motion Vector (CMV) predictions of radiation第32-35页
    2.6 Datasets for irradiance forecast analysis第35-36页
    2.7 CMV forecasts of irradiance by cloud index第36页
    2.8 Forecasting methods of PV power第36-38页
    2.9 Regressive methods第38-46页
        2.9.1 Linear stationary models第42页
        2.9.2 Auto-Regressive (AR) models第42-44页
        2.9.3 Moving Average (MA) models第44页
        2.9.4 Mixed Auto-Regressive Moving Average (ARMA) models第44-46页
        2.9.5 Mixed Auto-Regressive Moving Average models withexogenous variables (ARMAX)第46页
    2.10 Machine learning methods第46-53页
        2.10.1 Linear regression第47页
        2.10.2 Generalized linear models第47-48页
        2.10.3 Nonlinear regression第48-49页
        2.10.4 Support vector machines/support vector regression第49-50页
        2.10.5 Decision tree learning (Breiman bagging)第50页
        2.10.6 Nearest neighbor第50-51页
        2.10.7 Markov chain第51页
        2.10.8 Unsupervised learning第51页
        2.10.9 K-means and k-methods clustering第51-52页
        2.10.10 Hierarchical clustering第52-53页
CHAPTER 3 Analysis and review of PV power第53-64页
    3.1 Study of PV Power Data第53-54页
    3.2 Relationship Between meteorological parameters and PV Output第54-58页
        3.2.1 Numerical weather radiation第54-55页
        3.2.2 Ambient Temperature第55-56页
        3.2.3 Wind Speed第56-57页
        3.2.4 Humidity第57-58页
        3.2.5 Fog第58页
    3.3 Review of forecasting methods第58-64页
        3.3.1 Solar irradiance forecasting review第59-61页
        3.3.2 PV Power Forecasting Review第61-64页
CHAPTER 4 PV power forecast in haze weather第64-79页
    4.1 Forecasting of PV power in haze weather第64页
    4.2 Haze weather in Beijing第64-66页
    4.3 Effect of Haze on PV power第66-67页
    4.4 Effect of meteorological parameters on PV power第67-70页
    4.5 BP Network第70-73页
        4.5.1 Fundamentals of BP Network第70-72页
        4.5.2 Hybrid forecasting method第72-73页
    4.6 Simulation Results第73-79页
        4.6.1 Haze Weather or high AQI Tests第74-76页
        4.6.2 Clear weather Tests第76-79页
CHAPTER 5 PV power forecast during normal weather第79-91页
    5.1 PV power forecasting第79-80页
    5.2 Effect of weather data on PV power第80-81页
    5.3 Cascade feed forward network第81-86页
        5.3.1 PV power forecasting by Cascade feed forward network第82-84页
        5.3.2 Simulation results of CF network第84-86页
    5.4 Forecasting with Elman neural network第86-90页
        5.4.1 Algorithm of Elman network第86-88页
        5.4.2 Results of Elman neural network第88-90页
    5.5 Conclusion第90-91页
CHAPTER 6 Conclusion第91-94页
    6.1 Contributions第92页
    6.2 Guidelines for Future Work第92-94页
References第94-104页
Biography第104页

论文共104页,点击 下载论文
上一篇:异构网络环境下无线资源管理关键技术研究
下一篇:新能源场站送出线路继电保护原理研究