摘要 | 第3-5页 |
Abstract | 第5-6页 |
第1章 绪论 | 第10-14页 |
1.1 研究意义 | 第10-11页 |
1.2 研究背景 | 第11-12页 |
1.3 国内外研究现状 | 第12-13页 |
1.4 本文主要研究内容 | 第13-14页 |
第2章 基于面结构光的点云数据获取 | 第14-27页 |
2.1 结构光测量原理 | 第14-16页 |
2.2 相移法求解相位 | 第16-18页 |
2.2.1 四步相移法 | 第16-17页 |
2.2.2 相位展开算法 | 第17-18页 |
2.3 四步相移法的实践 | 第18-19页 |
2.4 多频外差法 | 第19-23页 |
2.4.1 多频外差法原理 | 第19-20页 |
2.4.2 光栅条纹参数确定方法 | 第20-22页 |
2.4.3 多频外差法初步实践 | 第22-23页 |
2.5 实验环境搭建 | 第23-24页 |
2.6 相机标定和投影仪标定 | 第24-26页 |
2.6.1 相机标定 | 第24-25页 |
2.6.2 投影仪标定 | 第25-26页 |
2.7 点云生成 | 第26-27页 |
第3章 点云数据预处理 | 第27-35页 |
3.1 点云数据的滤波和精简 | 第27-28页 |
3.2 点云空间拓扑关系建立 | 第28-35页 |
3.2.1 kd-tree | 第28-30页 |
3.2.2 octree | 第30-33页 |
3.2.3 空间包围盒法 | 第33-35页 |
第4章 点云三角网格剖分 | 第35-44页 |
4.1 三角剖分相关概念 | 第35-36页 |
4.1.1 散乱点 | 第35页 |
4.1.2 点集的凸包 | 第35-36页 |
4.1.3 点集的三角化 | 第36页 |
4.2 Voronoi图与Delaunay三角化 | 第36-38页 |
4.2.1 Voronoi图 | 第36-37页 |
4.2.2 Delaunay三角化 | 第37-38页 |
4.3 Delaunay三角网构建方法 | 第38-41页 |
4.3.1 逐点插入法 | 第38-39页 |
4.3.2 分割合并法 | 第39-40页 |
4.3.3 递归生长法 | 第40-41页 |
4.4 三类Delaunay三角网构建方法比较 | 第41-42页 |
4.5 逐点插入法的优化 | 第42-44页 |
第5章 三维曲面重建的实现 | 第44-61页 |
5.1 泊松曲面重建 | 第44-49页 |
5.1.1 泊松算法 | 第45页 |
5.1.2 泊松算法实现 | 第45-47页 |
5.1.3 泊松算法实现步骤 | 第47-48页 |
5.1.4 泊松重建效果 | 第48-49页 |
5.2 基于映射法的快速Delaunay三角化曲面建模 | 第49-61页 |
5.2.1 映射法的原理 | 第49-50页 |
5.2.2 k近邻查找 | 第50-51页 |
5.2.3 k近邻局部投影 | 第51-54页 |
5.2.4 局部Delaunay三角剖分和三角网格拼接 | 第54-57页 |
5.2.5 三角网格曲面拟合 | 第57-59页 |
5.2.6 基于映射法的快速Delaunay三角化曲面建模效果 | 第59-61页 |
第6章 三维曲面重建的优化及扩展 | 第61-68页 |
6.1 三维曲面空洞填充 | 第61-64页 |
6.1.1 基于k近邻的边界点检测 | 第61-62页 |
6.1.2 边界线连接 | 第62页 |
6.1.3 空洞填充 | 第62-63页 |
6.1.4 填充三角片的合法检查 | 第63-64页 |
6.1.5 空洞填充效果 | 第64页 |
6.2 个性化纹理映射 | 第64-66页 |
6.2.1 纹理映射过程 | 第64-65页 |
6.2.2 纹理映射实现 | 第65-66页 |
6.2.3 纹理映射效果 | 第66页 |
6.3 三维重构软件系统的搭建 | 第66-68页 |
第7章 总结与展望 | 第68-70页 |
7.1 研究总结 | 第68页 |
7.2 研究展望 | 第68-70页 |
参考文献 | 第70-73页 |
致谢 | 第73页 |