首页--数理科学和化学论文--数学论文--代数、数论、组合理论论文--模糊数学论文

Research on Fuzzy Characterization of Rough Set and Characters of Knowledge Granule

Abstract第7-11页
Abstract in Chinese第12-16页
Notation第16-17页
Chapter 1 Introduction第17-31页
    1.1 A Survey for the Advances of Rough Set Theory第17-20页
        1.1.1 Introduction of Rough Set Theory and Its Development第17-18页
        1.1.2 Main Problems Studied in Rough Set Theory第18-20页
    1.2 Basic Concepts of Rough Set第20-28页
        1.2.1 Definition of Rough Set and Some Important Concepts第21-22页
        1.2.2 Characterized Description of Rough Set第22-24页
        1.2.3 Rough Membership Function第24页
        1.2.4 Reduction and Core of Knowledge第24-26页
        1.2.5 Dependency of Knowledge第26-27页
        1.2.6 Representation Methods of Knowledge第27-28页
    1.3 Main Work in This Paper第28-31页
Chapter 2 New Methods for Measuring Fuzziness in Rough Set第31-53页
    2.1 Fuzziness in Rough Set第31-44页
        2.1.1 Concepts of Fuzziness第31-33页
        2.1.2 Fuzziness in Rough Set Based on Equivalence Relation第33-34页
        2.1.3 Two New Calculating Formulae of the Fuzziness in Rough Set第34-41页
        2.1.4 Generalized Fuzziness in Rough Set Based on General Binary Relation第41-44页
    2.2 Measures of Similarity Between Rough Sets第44-50页
        2.2.1 Concepts of Similarity第44-45页
        2.2.2 Similarity Between Rough Sets Based on Equivalence Relation第45-49页
        2.2.3 Generalized Similarity Between Rough Sets Based on General Binary Relation第49-50页
    2.3 Fuzziness Induced by Similarity Based on Equivalence Relation第50-53页
Chapter 3 Extensions of Rough Set Based on Rough Membership Function第53-77页
    3.1 Rough Membership Function Representation of Pawlak Rough Set and Its Limitations第53-54页
    3.2 λ-Rough Set Based on Rough Membership Function第54-64页
        3.2.1 λ-Rough Set Based on Equivalence Relation第54-59页
        3.2.2 Generalized λ-Rough Set Based on General Binary Relation第59-64页
    3.3 (α,β)-Rough Set Based on Rough Membership Function第64-77页
        3.3.1 (α,β)-Rough Set Based on Equivalence Relation第64-71页
        3.3.2 Generalized(α,β)-Rough Set Based on General Binary Relation第71-77页
Chapter 4 Rough Set and Its Produced Knowledge and Knowledge Granule第77-105页
    4.1 Characters of Knowledge Granule and Calculation of Knowledge Granulation第77-88页
        4.1.1 Characters of Knowledge Granule第77-79页
        4.1.2 Calculation of Knowledge Granulation第79-84页
        4.1.3 Relations Between Knowledge Granulation, Discernibility Degree and Entropy第84-88页
    4.2 Knowledge Granulation Representation of the Concepts and Operations in Rough Set Theory第88-91页
    4.3 Attribute Reduction Based on Knowledge Granulation Under Information Systems第91-97页
        4.3.1 Attribute Reduction of Information Systems第91-92页
        4.3.2 Knowledge Granulation of Information Systems第92-93页
        4.3.3 Attribute Significance of Information Systems第93-95页
        4.3.4 A Knowledge Granulation-based Algorithm for Attribute Reduction under Information Systems第95-97页
    4.4 Attribute Reduction Based on Knowledge Granulation Under Incomplete Information Systems第97-105页
        4.4.1 Basic Concepts of Incomplete Information Systems第97-99页
        4.4.2 Attribute Reduction of Incomplete Information Systems第99-100页
        4.4.3 Knowledge Granulation of Incomplete Information Systems第100-101页
        4.4.4 Attribute Significance of Incomplete Information Systems第101-102页
        4.4.5 A Knowledge Granulation-based Algorithm for Attribute Reduction under Incomplete Information Systems第102-105页
Chapter 5 Inducing Rough Region and Inducing Rough Correlation Region of Rough Set第105-118页
    5.1 Concepts and Properties of Inducing Rough Region and Inducing Rough Correlation Region第105-109页
        5.1.1 Basic Inducing Rough Factor and Basic Inducing Rough Correlation Factor第105-106页
        5.1.2 Concepts and Properties of Inducing Rough Region and Inducing Rough Correlation Region第106-109页
    5.2 Definitions and Properties of Some Particular Rough Sets第109-113页
    5.3 Approximately Exact of Rough Problems in Rough Set第113-118页
        5.3.1 An Impact of the Structure Feature of Inducing Rough Region and Inducing Rough Correlation Region on the Accuracy of Classification第113-114页
        5.3.2 Approximately Exact Methods of Rough Problems第114-118页
Conclusions第118-120页
Bibliography第120-129页
Acknowledgements第129-130页
Papers Published and Research Projects Undertaken During Studying for the Doctorate第130-131页
学位论文评阅及答辩情况表第131页

论文共131页,点击 下载论文
上一篇:Studies on the Effects of High Temperature Stress and Growth Regulators Abscisic Acid Cytokinins and Brassinosteroids on Photosynthetic Apparatus of Tomato (Lycopersicon Esculentum Mill cv 9021)
下一篇:Study of Carbohydrate-carbohydrate Interaction: Total Synthesis of Two Deoxy Lewis~x Pentaosyl Glycosphingolipids and Molecular Dynamics Simulations of Lewis~x Cluster