摘要 | 第1-5页 |
Abstract | 第5-7页 |
第一章 绪论 | 第7-11页 |
·研究背景于意义 | 第7-9页 |
·研究现状 | 第9-10页 |
·组织结构 | 第10-11页 |
第二章 相关工作 | 第11-19页 |
·文本处理 | 第11-14页 |
·文本表示与权值 | 第11-13页 |
·特征选择 | 第13-14页 |
·聚类 | 第14-16页 |
·距离公式 | 第16-17页 |
·聚类算法评估 | 第17-18页 |
·半监督聚类 | 第18-19页 |
第三章 基于标记样例和相似度调整的k-means 算法 | 第19-25页 |
·相关算法介绍 | 第19-22页 |
·COP k-means 算法 | 第20页 |
·Seeded k-means 算法 | 第20-21页 |
·k-means++算法 | 第21-22页 |
·基于标记样例和相似度调整的k-means 算法 | 第22-25页 |
·相似度调整 | 第22-23页 |
·选择聚类种子 | 第23-25页 |
第四章 实验 | 第25-32页 |
·数据集 | 第25-26页 |
·实验设置 | 第26页 |
·实验相关工作 | 第26-27页 |
·特征选择 | 第26-27页 |
·评估参数 | 第27页 |
·实验结果分析 | 第27-32页 |
第五章 总结与展望 | 第32-33页 |
·总结 | 第32页 |
·展望 | 第32-33页 |
参考文献 | 第33-36页 |
致谢 | 第36-37页 |
在校期间公开发表的论文 | 第37页 |