摘要 | 第1-7页 |
ABSTRACT | 第7-9页 |
致谢 | 第9-14页 |
第一章 绪论 | 第14-21页 |
·论文选题背景及意义 | 第14-15页 |
·课题的研究现状 | 第15-19页 |
·非模型去雾算法研究 | 第15-17页 |
·基于物理模型去雾算法研究 | 第17-19页 |
·本文研究内容 | 第19-20页 |
·本文章节安排 | 第20-21页 |
第二章 相关工作介绍 | 第21-27页 |
·引言 | 第21页 |
·Retinex 理论 | 第21-22页 |
·单尺度 Retinex 算法(SSR) | 第21-22页 |
·多尺度 Retinex 算法(MSR) | 第22页 |
·大气散射模型 | 第22-26页 |
·入射光衰减模型 | 第23-24页 |
·大气光成像模型 | 第24-25页 |
·雾天退化模型的推导 | 第25-26页 |
·本章小结 | 第26-27页 |
第三章 基于图像引导滤波的 Retinex 图像去雾算法 | 第27-37页 |
·引言 | 第27页 |
·图像引导滤波器 | 第27-30页 |
·图像引导滤波器算法 | 第27-29页 |
·尺度参数ε分析 | 第29-30页 |
·基于图像引导滤波的 Retinex 图像增强 | 第30-32页 |
·基于图像引导滤波平滑约束的 Retinex 算法 | 第30-31页 |
·基于两次图像引导滤波的 Retinex 算法 | 第31-32页 |
·基于小波域信息融合的多尺度 Retinex 算法 | 第32-33页 |
·实验结果与分析 | 第33-36页 |
·一次图像引导滤波 VS 两次图像引导滤波 | 第33页 |
·算法分析与对比 | 第33-36页 |
·本章小结 | 第36-37页 |
第四章 基于粒子群的雾天图像复原算法 | 第37-49页 |
·引言 | 第37页 |
·雾天图像退化模型 | 第37-39页 |
·均匀雾天图像退化模型 | 第37页 |
·不均匀雾天图像退化模型 | 第37-39页 |
·改进的 k-means 分割算法 | 第39-43页 |
·分割特征提取 | 第39-42页 |
·半反转特征 | 第39-41页 |
·纹理特征提取 | 第41页 |
·特征向量的构成 | 第41-42页 |
·改进的 k-means 图像分割 | 第42页 |
·改进的 k-means 分割算法的实现 | 第42-43页 |
·基于粒子群的图像复原算法 | 第43-45页 |
·β的估计 | 第43-44页 |
·传输图的修正及图像去雾 | 第44-45页 |
·实验结果与分析 | 第45-48页 |
·本章小结 | 第48-49页 |
第五章 雾天复原算法的评价 | 第49-57页 |
·相关工作 | 第49-50页 |
·雾天图像和去雾图像的分析 | 第50-51页 |
·图像提升度评价 | 第51-53页 |
·结构相似性评价 | 第53-54页 |
·去雾图像的评价 | 第54-55页 |
·本章小结 | 第55-57页 |
第六章 总结与展望 | 第57-59页 |
·全文工作的总结 | 第57-58页 |
·未来工作的展望 | 第58-59页 |
参考文献 | 第59-64页 |
攻读硕士学位期间主要科研工作及成果 | 第64-65页 |