| 摘要 | 第1-5页 |
| ABSTRACT | 第5-8页 |
| 引言 | 第8-9页 |
| 1 绪论 | 第9-12页 |
| ·辛几何的定义 | 第9-10页 |
| ·非完整力学系统的辛几何结构 | 第10-11页 |
| ·辛算法的发展历史及现状 | 第11-12页 |
| ·辛算法在非完整力学系统中的实际应用现状 | 第12页 |
| 2 非完整力学系统Boltzmann-Hamel方程的Birkhoff化 | 第12-17页 |
| ·Boltzmann-Hamel方程的几何理论与正则形式 | 第12-15页 |
| ·Boltzmann-Hamel方程的介绍 | 第12-13页 |
| ·Boltzmann-Hamel方程的几何理论 | 第13-14页 |
| ·Boltzmann-Hamel方程的正则形式 | 第14-15页 |
| ·Birkhoff相关预备知识 | 第15-16页 |
| ·Birkhoff系统介绍 | 第15页 |
| ·Birkhoff辛结构 | 第15-16页 |
| ·Hamilton-Hamel方程的Birkhoff化 | 第16-17页 |
| 3 Boltzmann-Hamel方程的广义辛差分格式及数值实验 | 第17-26页 |
| ·Boltzmann-Hamel方程的广义辛差分格式 | 第17-20页 |
| ·四轮小车经典案例及数值实验 | 第20-25页 |
| ·放宽限制条件下的Boltzmann-Hamel方程的Birkhoff化 | 第25-26页 |
| 结论 | 第26-27页 |
| 1. 本文主要解决的问题及结论 | 第26页 |
| 2. 本研究方向的展望和设想 | 第26-27页 |
| 参考文献 | 第27-30页 |
| 申请学位期间的研究成果及发表的学术论文 | 第30-31页 |
| 致谢 | 第31页 |