首页--工业技术论文--机械、仪表工业论文--机械零件及传动装置论文--转动机件论文--轴承论文--滚动轴承论文

基于改进随机共振法的轴承故障诊断

Acknowledgements第6-7页
Abstract第7-8页
摘要第9-11页
List of abbreviations and symbols第11-20页
1. Introduction第20-29页
    1.1. Machine vibration causes第20-21页
    1.2. Bearing fault diagnosis第21-24页
        a. Simulated outer race fault第22-24页
        b. Simulated inner race fault第24页
    1.3. Signal acquirement第24-25页
    1.4. Fault diagnosis literature review第25-28页
    1.5. Stochastic Resonance第28-29页
2. Stochastic Resonance with Duffing Oscillator-Gauss potential for weak signal extraction第29-55页
    2.1. Principle of Stochastic Resonance第29-35页
        2.1.1 The periodic response analysis第30-32页
        2.1.2 Frequency spectrum analysis第32-33页
        2.1.3 Re-scaling frequency stochastic resonance第33-35页
    2.2. Optimal Bandwidth detection based on Bayes Segmentation第35-36页
    2.3. Application of the B-S algorithm into the frequency spectrum第36-37页
    2.4. Peak energy index第37-39页
        a. Frequency Spectrum第37页
        b. Envelope Spectrum第37-38页
        c. Butterworth filter第38-39页
    2.5. BS-PE analysis第39-40页
    2.6. Duffing Oscillator第40-43页
    2.7. Procedure of the proposed model 1第43-44页
    2.8. Experimental verification第44-54页
        2.8.1. Case Western Reserve University bearing data set第44-48页
        2.8.2. Bearing data from self-experiment developed at Zhejiang University第48-54页
    2.9. Chapter conclusion第54-55页
3. Stochastic resonance polynomial index and its application in bearing fault diagnosis第55-70页
    3.1. Underdamped second-order stochastic resonance model第56-57页
    3.2. Stochastic Resonance Polynomial Index第57-63页
        3.2.1 Indexes used in the proposed method第58-59页
        3.2.2 Index variation with different noise intensities第59页
        3.2.3 Stochastic Resonance Polynomial Index第59-63页
    3.3. Procedure of the proposed model 2第63-64页
    3.4. Experimental verification第64-68页
        3.4.1 CWRU bearing data set第64-67页
        3.4.2 ZJU bearing data set第67-68页
    3.5. Chapter conclusion第68-70页
4. FFT-sliding window in combination with adaptive stochastic resonance for bearing fault diagnosis第70-82页
    4.1. Weighted power spectrum kurtosis index第71-72页
    4.2. Improved adaptive stochastic resonance method第72-73页
        4.2.1 Sliding window construction第72-73页
    4.3. Procedure of the proposed model 3第73-76页
    4.4. Experimental verification第76-78页
        4.4.1. CWRU bearing data set第76-77页
        4.4.2. ZJU bearing data set第77-78页
    4.5. Enhancement signal extraction by using sliding window mechanics第78-79页
    4.6. Benchmark comparison第79-81页
    4.7. Chapter conclusion第81-82页
5. Proposed Models Comparison第82-88页
    5.1. Considerations for the model selection第82页
    5.2. The quality house第82页
    5.3. User's voice第82-83页
    5.4. Researcher's voice第83页
    5.5. Models proposed第83-84页
        5.5.1. Stochastic Resonance(Model 1)第83页
        5.5.2. Improved Stochastic Resonance (Model 2)第83-84页
        5.5.3. Improved Adaptive Stochastic Resonance (Model 3)第84页
    5.6. Solutions evaluation第84-87页
        a) Evaluation of the specific weight of each criterion第84-85页
        b) Fault identification第85页
        c) Performance in noise第85页
        d) Computational cost第85-86页
        e) Algorithm complexity第86页
        f) Adaptive method第86页
        g) Future research第86-87页
        h) Conclusions table第87页
    5.7. Chapter conclusion第87-88页
6. Conclusions and Future work第88-90页
    6.1. Conclusions第88-89页
    6.2. Future work第89-90页
Bibliography第90-93页
Achievements第93页

论文共93页,点击 下载论文
上一篇:基于设计意图的CAD模型标注系统研究与开发
下一篇:ZM6镁合金后机匣铸件低压铸造数值模拟及工艺研究