首页--工业技术论文--自动化技术、计算机技术论文--自动化基础理论论文--人工智能理论论文--自动推理、机器学习论文

Fuzziness Based Instance Selection for Supervised and Semi-Supervised Learning

Abstract第4-5页
Chapter 1: Introduction第10-19页
    1.1 Motivation and challenges第10-13页
    1.2 Research problems第13-14页
    1.3 Contributions第14-15页
    1.4 Theoretical and practical relevance第15-17页
    1.5 Thesis organization第17-19页
Chapter 2: Supervised, semi-supervised and instance selection learning第19-51页
    2.1 Introduction第19-21页
    2.2 Supervised learning第21-31页
        2.2.1 Neural network with random weight (NNRw)第23-28页
        2.2.2 Fuzzy k-nearest neighbor (Fuzzy k-NN)第28-31页
    2.3 Semi-supervised learning (SSL)第31-39页
        2.3.1 Self-training第32-33页
        2.3.2 Co-training第33-34页
        2.3.3 Generative models第34-36页
        2.3.4 Graph based methods第36-37页
        2.3.5 Transductive support vector machine (TSVM)第37-38页
        2.3.6 Limitation in existing semi-supervised learning (SSL) methods第38-39页
    2.4 Instance selection process第39-46页
        2.4.1 Traditional instance selection methods第41-44页
        2.4.2 Uncertainty based instance selection methods第44-45页
        2.4.3 Limitation of instance selection methods第45-46页
    2.5 Generalization ability of learning model第46-49页
        2.5.1 Generation of training and testing sets第46-47页
        2.5.2 Generalization measures第47-49页
    2.6 Conclusion第49-51页
Chapter 3: Fuzzy set theory and different types of uncertainties第51-61页
    3.1 Introduction第51-53页
    3.2 Basic concept of fuzzy set第53-54页
    3.3 Uncertainty and its types第54-56页
        3.3.1 Entropy第55页
        3.3.2 Fuzziness第55-56页
        3.3.3 Ambiguity第56页
    3.4 Fuzziness of a fuzzy set第56-59页
    3.5 Fuzzy classification第59-60页
    3.6 Conclusion第60-61页
Chapter 4: Model formulation for fuzziness based instance selection第61-93页
    4.1 Introduction第61-62页
    4.2 How fuzziness can be associated with instances?第62-63页
    4.3 How to compute fuzziness of a trained classifier?第63-64页
    4.4 Impact of classifier’s prediction on fuzziness based categorization第64-65页
    4.5 Instance categories formation based on fuzziness quantity第65-68页
        4.5.1 Percentage Split第65-66页
        4.5.2 Proposed M-split criteria第66-68页
        4.5.3 Natural split第68页
    4.6 Experimentation第68-84页
        4.6.1 Fuzziness based categorization using NNRw第70-74页
        4.6.2 Fuzziness based categorization using Fuzzy k-NN第74-80页
        4.6.3 Fuzziness categorization and its relation to misclassification第80-82页
        4.6.4 Relationship with fuzziness and classification boundary第82-84页
    4.7 Divide-and-conquer strategy第84-86页
    4.8 Impact of fuzzy categorizations on divide-and-conquer strategy第86-91页
        4.8.1 Analysis of results第87-89页
        4.8.2 Discussion第89-91页
    4.9 Conclusion第91-93页
Chapter 5: Fuzziness based categorization for an intrusion detection system(IDS): A semi-supervised learning technique第93-108页
    5.1 Introduction第93-94页
    5.2 Intrusion detection system (IDS)第94-97页
        5.2.1 Detection techniques第95页
        5.2.2 Misuse-based vs anomaly-based detection第95-96页
        5.2.3 Machine learning techniques for IDS第96-97页
    5.3 Proposed semi-supervised learning mechanism for IDS第97-99页
        5.3.1 Algorithm based on divide-and-conquer strategy第97-99页
    5.4 Experimentation第99-107页
        5.4.1 Data specification第99-100页
        5.4.2 Data preprocessing第100-102页
        5.4.3 Experimental results第102-106页
        5.4.4 Comparative analysis第106-107页
    5.5 Conclusion第107-108页
Chapter 6: Fuzziness induction for representative instances in intrusion de-tection system (IDS)第108-119页
    6.1 Introduction第108-109页
    6.2 Background第109-110页
    6.3 Instance selection algorithm for IDS第110-112页
    6.4 Experimentation and performance evaluation第112-117页
        6.4.1 Dataset preprocessing第113页
        6.4.2 Performance Comparison第113-115页
        6.4.3 Comparative analysis第115-117页
    6.5 Conclusion第117-119页
Chapter 7: Conclusion and future work第119-122页
References第122-134页
Dedication第134-135页
Acknowledgement第135-137页
List of publications第137页

论文共137页,点击 下载论文
上一篇:印染废水处理过程中芳香烃化合物的污染特征和去除特性研究
下一篇:后发国家产业技术创新模式研究