首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--计算机网络论文--一般性问题论文

HTTP-Based Botnet Detection Using Network Traffic Traces

摘要第5-9页
Abstract第9-12页
List of Abbreviations第19-20页
Chapter 1. Introduction第20-40页
    1.1 Botnet Definition第20-30页
        1.1.1 Bot and botnet第20-21页
        1.1.2 History of the Botnet第21-23页
        1.1.3 Botnet Architecture第23-27页
        1.1.4 Botnet lifecycle第27-30页
    1.2 Evolution of Botnet第30-33页
        1.2.1 IRC-Based Botnet第31页
        1.2.2 P2P-Based Botnet第31-32页
        1.2.3 HTTP-Based Botnet第32-33页
    1.3 Motivation and Challenges第33-35页
    1.4 The goal of the dissertation第35页
    1.5 Contributions and Outline of dissertation第35-40页
        1.5.1 Contributions第35-38页
        1.5.2 Outline of the Dissertation第38-40页
Chapter 2. Background and Related Works第40-54页
    2.1 Botnet Detection Techniques第40-45页
        2.1.1 Honeypots-based detection第40-42页
        2.1.2 Anomaly-based Detection第42页
        2.1.3 DNS-based Detection第42-44页
        2.1.4 Mining-based Detection第44-45页
    2.2 Detection evasion techniques第45-50页
        2.2.1 DGA-Based technique第45-46页
        2.2.2 Fast Flux-Based technique第46-50页
    2.3 Related Works第50-54页
Chapter 3. Detecting DGA-Bot Infected Machines Based On Analyzing The SimilarPeriodic Of Domain Queries第54-70页
    3.1 Introduction第54-56页
    3.2 Proposed methods第56-61页
        3.2.1 System Overview第56-57页
        3.2.2 Filtering DNS traffic第57-58页
        3.2.3 Similarity Analyzer第58-60页
        3.2.4 Clustering第60-61页
    3.3 Experiment Results第61-68页
        3.3.1 Bot samples collection第61-62页
        3.3.2 DNS traffic extraction第62-66页
        3.3.3 Detection and Clustering第66-68页
    3.4 Discussions第68-69页
    3.5 Conclusion and Future Work第69-70页
Chapter 4. Detecting C&C Servers Of Botnet With Analysis Features Of NetworkTraffic第70-94页
    4.1 Introduction第70-72页
    4.2 Related Works第72-73页
    4.3 Proposed Approach第73-81页
        4.3.1 System Overview第73-74页
        4.3.2 Training Phase第74-76页
        4.3.3 Detecting Phase第76-78页
        4.3.4 Feature extraction第78-80页
        4.3.5 C&C Detection第80-81页
    4.4 Experimental and Evaluation第81-92页
        4.4.1 Prepare the Training Data Set第81页
        4.4.2 Evaluation of features selection第81-83页
        4.4.3 The Classifier Comparison第83-85页
        4.4.4 Evaluation of the detection rate on real-world DNS traffic第85-90页
        4.4.5 Compare with other approaches第90-92页
    4.5 Discussion第92-93页
    4.6 Conclusion第93-94页
Chapter 5. Detecting Malicious Fast-Flux Service Networks Use Feature-BasedMachine Learning Classification Techniques第94-126页
    5.1 Introduction第94-97页
    5.2 Related works第97-99页
    5.3 Proposed Methods第99-114页
        5.3.1 System Overview第99-100页
        5.3.2 Data Aggregate第100-102页
        5.3.3 Data Pre-filtering第102-104页
        5.3.4 Feature Extraction第104-114页
    5.4 Experiment and Evaluation第114-124页
        5.4.1 Data Set第114-116页
        5.4.2 Experimental Results第116-123页
        5.4.3 Compare with previous works第123-124页
    5.5 Conclusion第124-126页
Chapter 6. Conclusion and Future Works第126-130页
    6.1 Summary of Research and Conclusions第126-128页
    6.2 Limitation and Future Work第128-130页
Bibliography第130-140页
Acknowledgements第140-142页
List of Publications第142页

论文共142页,点击 下载论文
上一篇:夏蜡梅幼苗施肥技术研究
下一篇:《新闻道德》第二部分翻译报告