首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--模式识别与装置论文

基于时空二进制特征的动作识别算法研究

摘要第5-6页
ABSTRACT第6-7页
Chapter 1 Introduction第18-30页
    1.1 Research Background and Significance第18-26页
    1.2 Research Content第26-28页
    1.3 Organization第28-30页
Chapter 2 Literature Review第30-44页
    2.1 Introduction第30页
    2.2 Datasets第30-34页
        2.2.1 The Weizmann Human Action Dataset第30-31页
        2.2.2 The KTH Human Action Dataset第31-32页
        2.2.3 The UCF-101 Action Recognition Dataset第32页
        2.2.4 The HMDB-51 Dataset第32-34页
    2.3 Global Features Representation第34-36页
    2.4 Local Features Representation第36-38页
    2.5 Binary Motion Feature Extraction (Dynamic Texture)第38-40页
        2.5.1 Local Binary Patterns-Based Motion Descriptors第38页
        2.5.2 Patch-based Motion Descriptors第38-39页
        2.5.3 Combination of Binary Descriptors with Floating-Point Descriptors第39-40页
    2.6 Deep Learning Architectures第40-43页
        2.6.1 3D CNN Networks第40-41页
        2.6.2 Two-Stream Networks第41-42页
        2.6.3 Temporal Dynamic Modeling with Temporal Pooling第42页
        2.6.4 Temporal Evolution Captured with RNN第42-43页
    2.7 Summary第43-44页
Chapter 3 Binary Motion Description for Action Recognition in Videos第44-71页
    3.1 Introduction第44页
    3.2 The Proximity Patches Pattern第44-47页
    3.3 BPPEM Descriptor第47-49页
        3.3.1 Overview第47-48页
        3.3.2 Computation of BPPEM第48-49页
    3.4 Proximity Patches Similarity Motion Descriptor第49-51页
        3.4.1 Introduction to PPSM第49-51页
        3.4.2 Computation of PPSM第51页
    3.5 Experiment Setup第51-55页
        3.5.1 Framework,Hardware and Software Specifications第51-53页
        3.5.2 Evaluation Metrics第53-55页
    3.6 Results and Analysis第55-70页
        3.6.1 Number of Surrounding Patches第55-57页
        3.6.2 SSD vs FND第57-58页
        3.6.3 Temporal Distance Between two Consecutive Frames第58页
        3.6.4 BPPEM第58-60页
        3.6.5 eBPPEM第60页
        3.6.6 PPSM第60-61页
        3.6.7 ePPSM第61-64页
        3.6.8 BPPEM-PPSM,and eBPPEM-ePPSM Fusions第64-65页
        3.6.9 Comparision with the State-of-the-art第65-70页
    3.7 Summary第70-71页
Chapter 4 Spatial Binary Descriptors for Human Action Recogni-tion第71-84页
    4.1 Introduction第71-72页
    4.2 FREAK, BinBoost, LATCH第72-77页
    4.3 Action Recognition with FREAK,BinBoost, LATCH Appearance De-scriptors第77-81页
    4.4 Binary Spatio-Temporal Descriptors with FREAK 8,BinBoost 16 andLATCH 8 as Appearance Descriptors第81-83页
        4.4.1 Analysis第81-83页
    4.5 Summary第83-84页
Chapter 5 3D Spatio-Temporal Binary CNNs第84-96页
    5.1 Introduction第84页
    5.2 Related Works第84-87页
        5.2.1 3D Convolutional Networks第84-87页
    5.3 Proposed Model: 3D Spatio-Temporal Binary Convolutional Network第87-88页
        5.3.1 Binarized ConvNets第87-88页
    5.4 3D Spatio-Temporal Binary CNNs (3D ST- BCNN)第88-90页
        5.4.1 Basic Components of the 3D Spatio-Temporal Binary CNNs第88-89页
        5.4.2 Binary Operations第89-90页
        5.4.3 Proposed Framework第90页
    5.5 Experimental Results and Analysis第90-95页
        5.5.1 Evaluation with Train and Validation Sets第91-92页
        5.5.2 Evaluation with Train,Validation and Test Sets第92-95页
    5.6 Summary第95-96页
Chapter 6 Conclusion and Future Works第96-100页
    6.1 Summary第96-98页
    6.2 Future Works第98-100页
Bibliography第100-109页
Acknowledgements第109-110页
Publications第110-111页

论文共111页,点击 下载论文
上一篇:基于肌音和CNN-SVM模型的人体膝关节运动意图识别研究
下一篇:非结构化对等网络信任管理的研究