人工蜂群算法优化感知机
中文摘要 | 第3-4页 |
英文摘要 | 第4-5页 |
1 绪论 | 第8-13页 |
1.1 国内外研究现状 | 第8-11页 |
1.2 研究的意义及本文的思路 | 第11页 |
1.3 论文的组织 | 第11-12页 |
1.4 本章小结 | 第12-13页 |
2 统计学习 | 第13-16页 |
2.1 统计学习的概述 | 第13-14页 |
2.2 分类 | 第14-15页 |
2.3 本章小结 | 第15-16页 |
3 感知机 | 第16-20页 |
3.1 感知机算法模型 | 第16-17页 |
3.2 感知机的学习策略 | 第17-18页 |
3.2.1 数据集的线性可分性 | 第17页 |
3.2.2 感知机学习策略 | 第17-18页 |
3.3 感知机学习算法 | 第18-19页 |
3.4 本章小结 | 第19-20页 |
4 人工蜂群算法 | 第20-26页 |
4.1 人工蜂群算法的生物背景 | 第20-22页 |
4.2 人工蜂群算法的基本原理 | 第22-24页 |
4.3 人工蜂群算法步骤 | 第24页 |
4.4 本章小结 | 第24-26页 |
5 蜂群感知机算法 | 第26-30页 |
5.1 蜂群感知机模型 | 第26-27页 |
5.2 蜂群感知机基本理论 | 第27页 |
5.3 蜂群感知机具体步骤流程 | 第27-28页 |
5.4 本章小结 | 第28-30页 |
6 算法检验 | 第30-32页 |
6.1 汽车引擎分类实例数据检验 | 第30-31页 |
6.2 模拟数据分类检验 | 第31-32页 |
7 总结与展望 | 第32-33页 |
7.1 本文总结 | 第32页 |
7.2 进一步展望 | 第32-33页 |
致谢 | 第33-34页 |
参考文献 | 第34-37页 |
附录 | 第37页 |
A. 作者在攻读硕士学位期间发表的论文目录 | 第37页 |