首页--工业技术论文--电工技术论文--电工材料论文--绝缘材料、电介质及其制品论文

输电线路用硅橡胶复合绝缘子的应用研究

学位论文数据集第3-6页
ABSTRACT第6-7页
摘要第8-17页
Abbreviations and Symbol Nomenclature第17-19页
Chapter 1: Introduction and Background第19-37页
    1.1 Introduction第19页
    1.2 Research Background第19-20页
    1.3 Glass vs Silicone insulators for outdoors第20-28页
        1.3.1 History of the porcelain insulators第21-23页
            1.3.1.1. Dry process porcelain第22-23页
            1.3.1.2. Glaze-welding第23页
        1.3.2 History of Silicone insulators第23-25页
        1.3.3 Comparison between porcelain insulators and Silicone insulators第25-27页
            1.3.3.1. Mechanical strength第26页
            1.3.3.2. Flashovers and punctures第26页
            1.3.3.3. Pollution and contamination第26-27页
            1.3.3.4. Tensile strength第27页
        1.3.4. Types of insulating material used for electrical transmission lines第27页
        1.3.5. Advantages and disadvantages of Silicone insulators第27-28页
            1.3.5.1. Advantages第27-28页
            1.3.5.2. Disadvantages第28页
    1.4 Causes of Failure of Silicone Insulators第28-35页
        1.4.1. General Causes第29页
        1.4.2. Vandalism第29-30页
        1.4.3. Failure by Pollution第30-31页
            1.4.3.1. Industrial Pollutants第30-31页
        1.4.4. Failure by Environmental Deposits第31-32页
            1.4.4.1. Fouling第31页
            1.4.4.2. Degradation of Leaching Components第31-32页
            1.4.4.3. Corrosion第32页
            1.4.4.4. Hydration第32页
            1.4.4.5. Discoloration第32页
        1.4.5. Effects of these Stresses第32-34页
            1.4.5.1. Chain Scission第32-33页
            1.4.5.2. Loss of Hydrophobicity第33页
            1.4.5.3. Corona Discharges and Dry Band Arcing第33-34页
            1.4.5.4. Cracking第34页
            1.4.5.5. Loss of Low Molecular Weight Components第34页
        1.4.6. Conclusion第34-35页
    1.5. Innovations第35-37页
Chapter 2: Previous Studies of the Factors that Cause Faster Degradation of theSilicone Insulating Materials第37-64页
    2.1. Introduction第37页
    2.2. The Rate of Bond Breaking of Silicone Used in Electrical Transmission Lines第37-44页
        2.2.1 Introduction第37-39页
        2.2.2 Ageing Mechanisms in Silicone第39-44页
            2.2.2.1 Thermal Aging第39-41页
            2.2.2.2 Ecological stress breaking第41-43页
            2.2.2.3 Ionizing Radiation第43-44页
        2.2.3 Conclusion第44页
    2.3. Surface Tracking on Silicone Insulators Used in Electrical Transmission Lines第44-54页
        2.3.1. Introduction第44-46页
        2.3.2. Silicone insulators第46-48页
        2.3.3. Surface tracking第48-52页
            2.3.3.1. Andrinov mechanism第50页
            2.3.3.2. Degradation in inert atmospheres第50-51页
            2.3.3.3. Tracking caused by a corona第51-52页
        2.3.4. Electrical trees第52-53页
        2.3.5. Conclusion第53-54页
    2.4. Biodegradation of Silicone Insulators Used in Electrical power第54-64页
        2.4.1. Introduction第54-55页
        2.4.2. Formation of Biofilms第55-57页
        2.4.3. Biodegradation of Silicone by Biofilms第57-60页
            2.4.3.1. Aerobic Stage第57-58页
            2.4.3.2. Anaerobic, Non-Methanogenic Phase第58页
            2.4.3.3. Acetogenesis第58页
            2.4.3.4. Anaerobic, Methanogenic Steady Phase第58-60页
        2.4.4. Factors Enhancing the Silicone Degradation第60-63页
            2.4.4.1. Composition of the Silicone第60-61页
            2.4.4.2. Crystalline Nature of the Silicone第61页
            2.4.4.3. Melting Temperature第61-62页
            2.4.4.4. Enzymes and Enzyme Action第62-63页
        2.4.5. Conclusion第63-64页
Chapter 3: Surface Degradation of Silicone Insulator Under Thermal Stress第64-72页
    3.1. Introduction第64页
    3.2. The conducted research on Effects of UV Radiation on Electrical Insulators第64-68页
    3.3. Discussion Corona and UV Effects第68-70页
    3.4. Conclusion第70-72页
Chapter 4: Leakage Current Analysis of Silicone Insulator第72-80页
    4.1. Introduction第72-73页
    4.2. Leakage Current Analysis第73-75页
    4.3. Results and Discussions第75-78页
    4.4. Conclusion第78-80页
Chapter 5: Analysis on Electrical Strength of Silicone Insulator第80-90页
    5.1. Introduction第80-81页
    5.2. Analysis on Electrical Strength of Silicone Insulator第81-83页
    5.3. Results and Discussions第83-89页
    5.4. Conclusion第89-90页
Chapter 6: New Design for Silicone Rubber Composite Insulators Used in ElectricalTransmission Lines第90-112页
    6.1. Introduction第90-91页
    6.2. Design Criteria for Silicone Rubber Insulators (Composite Insulator)第91-96页
        6.2.1. Introduction第91页
        6.2.2. Design Criteria for Silicone Rubber Insulators第91-92页
        6.2.3. Mechanical and Electrical Integrity of Silicone Rubber Insulators第92-93页
        6.2.4. Pollution Performance第93-94页
        6.2.5. Degradation of the Insulator第94-95页
        6.2.6. Brittle Fracture第95-96页
    6.3. Design and Testing of an Improved Profile for Silicone Rubber Composite Insulators第96-111页
        6.3.1. Introduction第96-98页
        6.3.2. Exposure of Conventional Silicone Insulator Profiles To the EnvironmentalDeposition Conditions第98-99页
        6.3.3. Design of Silicone Rubber Composite Insulators第99-102页
        6.3.4. Surface Tracking Test第102-103页
        6.3.5. Flow of Air Around the Insulator第103-108页
            6.3.5.1. How to Increase the Velocity of Air in the Nozzle第105-108页
            6.3.5.2. Effect of Vortex formation in the deposition on insulator surface第108页
            6.3.5.3. Decrease in vortex formation because of the direction of the moving air第108页
        6.3.6. Field Observations第108-109页
        6.3.7. Calculated Results第109-111页
        6.3.8. Discussion第111页
    6.4. Conclusion第111-112页
Chapter 7: Conclusion and Recommendation and Future Work第112-115页
    7.1. Conclusion第112-113页
    7.2. Recommendation and Future Work第113-115页
References第115-129页
Acknowledgements第129-130页
Professional Summary of Author第130-131页
Professional Summary of Supervisor第131-132页
Published Papers第132-133页
附录第133-134页

论文共134页,点击 下载论文
上一篇:码头系泊舰艇机械噪声源测试分析方法研究
下一篇:压水堆波动管流动与传热及热—力耦合结构应力、变形与疲劳研究