首页--工业技术论文--无线电电子学、电信技术论文--无线通信论文--无线电中继通信、微波通信论文

干扰可忍受认知无线电网络时逆系统信道估计和波束成形的时频维纳滤波器设计

Abstract第4-5页
Acknowledgements第6-13页
1 Introduction第13-22页
    1.1 Prevailing Interference Management Techniques第15-16页
    1.2 Spectrum Sensing in Cognitive Radio Networks第16-19页
        1.2.1 Cognitive radio spectrum sensing challenge第17-18页
        1.2.2 Proposed scheme第18-19页
    1.3 Thesis Survey and Contributions第19-22页
2 Time-Frequency Analysis第22-30页
    2.1 Stationary and Nonstationary Signals第23-24页
        2.1.1 Stationary signals第23页
        2.1.2 Nonstationary signals第23-24页
    2.2 Linear and Quadratic Time-Frequency Analysis第24-28页
        2.2.1 Linear time-frequency analysis第24-26页
        2.2.2 Quadratic time-frequency analysis第26-28页
    2.3 Summary第28-30页
3 Time-Reversal Communication Based PS-OFDM System Model第30-42页
    3.1 Time-Reversal Communication Principles第30-31页
    3.2 Multipath Propagation and Channel models第31-34页
        3.2.1 Multipath channel model第33-34页
    3.3 Deterministic and stochastic description of LTV channels第34-38页
        3.3.1 Deterministic description of LTV channels第34-35页
        3.3.2 Stochastic description of LTV channels第35-38页
    3.4 PS-OFDM Time-Reversal Communication System Model第38-41页
        3.4.1 System model第38-41页
    3.5 Summary第41-42页
4 Channel Estimation for Time-Reversal Communication第42-61页
    4.1 Time-Reversal Communication Challenges第43-44页
    4.2 Characterization of Channel Impulse Response as a Local Scattering Function第44-47页
        4.2.1 Correlation-underspread property for non-WSSUS LTV channels第45-46页
        4.2.2 Example第46-47页
    4.3 A Locally Stationary Processes Approach to Nonparametric Second-OrderChannnel Statistics Estimation第47-52页
        4.3.1 Linear channel operator methods and the generalized Weyl symbol第48-50页
        4.3.2 Generalized Wigner-Ville distribution and time-varying power spectrum第50-51页
        4.3.3 Locally stationary processes第51-52页
    4.4 Fast Karhunen-Loeve Basis Selection Algorithm第52-54页
    4.5 Conventional Optimal Wiener Filter第54-56页
    4.6 Design of a Frequency Domain Nonstationary Time-Varying Noncausal WienerFilter for Locally Stationary Processes第56-57页
    4.7 Simulation Results第57-59页
    4.8 Summary第59-61页
5 Improvement of Symbol Error Rate Using Discrete-Rate Adaptive Modu-lation Technique第61-71页
    5.1 Adaptive Modulation Techniques第62-68页
        5.1.1 Discrete-rate adaption technique第63-68页
    5.2 Simulation Results第68-70页
    5.3 Summary第70-71页
6 Location and Environment Awareness第71-79页
    6.1 Conventional Location Estimation Algorithms第72-73页
        6.1.1 TOA estimation第72页
        6.1.2 DOA estimation第72-73页
        6.1.3 RSSI estimation第73页
    6.2 Proposed Algorithm第73-77页
    6.3 Simulation Results第77页
    6.4 Summary第77-79页
7 Wigner-Ville Distribution MVDR Beamforming Scheme第79-97页
    7.1 Doppler Effect第81-82页
    7.2 System Model第82-84页
    7.3 Second-Order Statistics of the Observed Base Station Antenna Array Signal第84-85页
    7.4 A Locally Stationary Processes Approach to Nonparametric Spectral Analysis第85-87页
        7.4.1 Generalized Wigner-Ville Distribution and Time-Varying Spectrum第86页
        7.4.2 Locally Stationary Processes第86-87页
    7.5 Karhunen-Loeve Basis Selection Algorithm第87-89页
    7.6 Non-Causal Wiener Filter Design for Locally Stationary Processes第89-90页
    7.7 Conventional MVDR Beamformer第90-91页
    7.8 Time-Frequency Wigner-Ville Distribution MVDR Beamformer第91-93页
    7.9 Simulation Results第93-95页
    7.10 Summary第95-97页
8 Conclusions and Future Work第97-101页
    8.1 Summary of Results第98-100页
    8.2 Future Research Topics第100-101页
Bibliography第101-108页
作者简介及在学期间的研究成果第108页

论文共108页,点击 下载论文
上一篇:辛弃疾与南宋君臣关系考论
下一篇:汉语和越南语拟声词对比研究