分数阶自抗扰控制器的设计与应用
学位论文数据 | 第3-4页 |
摘要 | 第4-6页 |
ABSTRACT | 第6-8页 |
符号和缩略词说明 | 第13-14页 |
第一章 绪论 | 第14-20页 |
1.1 引言 | 第14-15页 |
1.2 前人的研究成果 | 第15-19页 |
1.2.1 自抗扰控制技术 | 第15-17页 |
1.2.2 分数阶对象的辨识及控制 | 第17-18页 |
1.2.3 分数阶自抗扰控制 | 第18-19页 |
1.3 本文研究的内容 | 第19-20页 |
第二章 分数阶微积分性质及应用 | 第20-26页 |
2.1 分数阶微积分理论基础 | 第20-21页 |
2.1.1 分数阶微积分定义 | 第20页 |
2.1.2 分数阶微积分性质 | 第20-21页 |
2.1.3 分数阶微分算子的近似 | 第21页 |
2.2 分数阶系统观测与控制 | 第21-24页 |
2.2.1 分数阶系统分类 | 第21-22页 |
2.2.2 分数阶全维状态观测器 | 第22-23页 |
2.2.3 分数阶PI~λD~μ控制器 | 第23-24页 |
2.3 线性等比例分数阶系统收敛准则 | 第24-26页 |
第三章 分数阶自抗扰控制器 | 第26-40页 |
3.1 自抗扰控制器 | 第26-30页 |
3.1.1 跟踪微分器 | 第26-28页 |
3.1.2 扩张状态观测器 | 第28-29页 |
3.1.3 非线性误差反馈 | 第29-30页 |
3.2 自抗扰控制器的简化及应用 | 第30-32页 |
3.2.1 线性自抗扰控制器 | 第30-31页 |
3.2.2 分数阶系统的自抗扰控制 | 第31-32页 |
3.3 分数阶自抗扰控制器 | 第32-40页 |
3.3.1 分数阶跟踪微分器 | 第32-34页 |
3.3.2 分数阶扩张状态观测器 | 第34-37页 |
3.3.3 分数阶误差反馈控制器 | 第37-40页 |
第四章 理论证明与仿真实验 | 第40-66页 |
4.1 分数阶自抗扰控制器的稳定性及鲁棒性 | 第40-53页 |
4.1.1 频域描述 | 第40-42页 |
4.1.2 根轨迹分析 | 第42-47页 |
4.1.3 频率分析 | 第47-49页 |
4.1.4 收敛性证明 | 第49-50页 |
4.1.5 鲁棒性分析 | 第50-53页 |
4.2 仿真实验 | 第53-66页 |
4.2.1 基准阶次模型 | 第53-54页 |
4.2.2 非等比例分数阶系统控制 | 第54-57页 |
4.2.3 非线性分数阶系统控制 | 第57-66页 |
第五章 总结与展望 | 第66-68页 |
5.1 总结 | 第66-67页 |
5.2 展望 | 第67-68页 |
参考文献 | 第68-72页 |
致谢 | 第72-74页 |
研究成果及发表的学术论文 | 第74-76页 |
作者和导师简介 | 第76-78页 |
附件 | 第78-79页 |